Properties

Base field 4.4.725.1
Label 4.4.725.1-49.1-a2
Conductor \((7,2 a^{3} - 3 a^{2} - 5 a + 2)\)
Conductor norm \( 49 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 4.4.725.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 3 x^{2} + x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 1, -3, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^4 - x^3 - 3*x^2 + x + 1)
 
gp (2.8): K = nfinit(a^4 - a^3 - 3*a^2 + a + 1);
 

Weierstrass equation

\( y^2 + \left(a^{3} - a^{2} - 2 a + 1\right) x y + y = x^{3} + \left(-a^{2} + 2 a\right) x^{2} + \left(568 a^{3} - 388 a^{2} - 1459 a - 558\right) x + 8695 a^{3} - 4402 a^{2} - 24476 a - 9732 \)
magma: E := ChangeRing(EllipticCurve([a^3 - a^2 - 2*a + 1, -a^2 + 2*a, 1, 568*a^3 - 388*a^2 - 1459*a - 558, 8695*a^3 - 4402*a^2 - 24476*a - 9732]),K);
 
sage: E = EllipticCurve(K, [a^3 - a^2 - 2*a + 1, -a^2 + 2*a, 1, 568*a^3 - 388*a^2 - 1459*a - 558, 8695*a^3 - 4402*a^2 - 24476*a - 9732])
 
gp (2.8): E = ellinit([a^3 - a^2 - 2*a + 1, -a^2 + 2*a, 1, 568*a^3 - 388*a^2 - 1459*a - 558, 8695*a^3 - 4402*a^2 - 24476*a - 9732],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((7,2 a^{3} - 3 a^{2} - 5 a + 2)\) = \( \left(a^{3} - 2 a - 3\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 49 \) = \( 49 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((282475249,282475249 a^{3} - 282475249 a^{2} - 564950498 a + 282475249,268644744 a^{3} - 268644744 a^{2} - 537289487 a + 436729490,168084746 a^{3} - 168084745 a^{2} - 336169493 a + 268644743)\) = \( \left(a^{3} - 2 a - 3\right)^{10} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 79792266297612001 \) = \( 49^{10} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( -\frac{649366395672402821983442}{282475249} a^{3} + \frac{1529695726182112186121154}{282475249} a^{2} - \frac{125669986007636959256933}{282475249} a - \frac{478998826494857905578142}{282475249} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(-\frac{41}{4} a^{3} - \frac{3}{4} a^{2} + \frac{85}{2} a + \frac{39}{2} : -\frac{17}{4} a^{3} - \frac{5}{4} a^{2} + 14 a + \frac{47}{8} : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{3} - 2 a - 3\right) \) \(49\) \(2\) \(I_{10}\) Non-split multiplicative \(1\) \(1\) \(10\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.1.4[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 49.1-a consists of curves linked by isogenies of degrees dividing 10.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.