Properties

Label 4.4.725.1-49.1-a2
Base field 4.4.725.1
Conductor norm \( 49 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.725.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 3 x^{2} + x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 1, -3, -1, 1]))
 
gp: K = nfinit(Polrev([1, 1, -3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 1, -3, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-a^{2}-2a+1\right){x}{y}+{y}={x}^{3}+\left(-a^{2}+2a\right){x}^{2}+\left(568a^{3}-388a^{2}-1459a-558\right){x}+8695a^{3}-4402a^{2}-24476a-9732\)
sage: E = EllipticCurve([K([1,-2,-1,1]),K([0,2,-1,0]),K([1,0,0,0]),K([-558,-1459,-388,568]),K([-9732,-24476,-4402,8695])])
 
gp: E = ellinit([Polrev([1,-2,-1,1]),Polrev([0,2,-1,0]),Polrev([1,0,0,0]),Polrev([-558,-1459,-388,568]),Polrev([-9732,-24476,-4402,8695])], K);
 
magma: E := EllipticCurve([K![1,-2,-1,1],K![0,2,-1,0],K![1,0,0,0],K![-558,-1459,-388,568],K![-9732,-24476,-4402,8695]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-2a-3)\) = \((a^3-2a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 49 \) = \(49\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-2000a^3-595a^2+21318a-5270)\) = \((a^3-2a-3)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -79792266297612001 \) = \(-49^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{649366395672402821983442}{282475249} a^{3} + \frac{1529695726182112186121154}{282475249} a^{2} - \frac{125669986007636959256933}{282475249} a - \frac{478998826494857905578142}{282475249} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{41}{4} a^{3} - \frac{3}{4} a^{2} + \frac{85}{2} a + \frac{39}{2} : -\frac{17}{4} a^{3} - \frac{5}{4} a^{2} + 14 a + \frac{47}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1.5291621717745288782076938438732759281 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 0.709895716538065 \)
Analytic order of Ш: \( 25 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-2a-3)\) \(49\) \(2\) \(I_{10}\) Non-split multiplicative \(1\) \(1\) \(10\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.1.4[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 49.1-a consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.