Properties

Base field 4.4.725.1
Label 4.4.725.1-41.2-a4
Conductor \((41,a^{3} - 3 a^{2} - a + 4)\)
Conductor norm \( 41 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 4.4.725.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 3 x^{2} + x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 1, -3, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^4 - x^3 - 3*x^2 + x + 1)
 
gp (2.8): K = nfinit(a^4 - a^3 - 3*a^2 + a + 1);
 

Weierstrass equation

\( y^2 + \left(a^{3} - a^{2} - a + 2\right) x y + y = x^{3} + \left(a^{3} - 4 a\right) x^{2} + \left(1080 a^{3} - 2888 a^{2} + 790 a + 550\right) x + 46346 a^{3} - 112940 a^{2} + 15137 a + 31683 \)
magma: E := ChangeRing(EllipticCurve([a^3 - a^2 - a + 2, a^3 - 4*a, 1, 1080*a^3 - 2888*a^2 + 790*a + 550, 46346*a^3 - 112940*a^2 + 15137*a + 31683]),K);
 
sage: E = EllipticCurve(K, [a^3 - a^2 - a + 2, a^3 - 4*a, 1, 1080*a^3 - 2888*a^2 + 790*a + 550, 46346*a^3 - 112940*a^2 + 15137*a + 31683])
 
gp (2.8): E = ellinit([a^3 - a^2 - a + 2, a^3 - 4*a, 1, 1080*a^3 - 2888*a^2 + 790*a + 550, 46346*a^3 - 112940*a^2 + 15137*a + 31683],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((41,a^{3} - 3 a^{2} - a + 4)\) = \( \left(a^{3} - 3 a^{2} - a + 4\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 41 \) = \( 41 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((37929227194915558802161,a^{3} - a^{2} - 2 a + 18525326458251487478863,a + 3155361387034335311615,a^{2} - a + 13612064189452703777372)\) = \( \left(a^{3} - 3 a^{2} - a + 4\right)^{14} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 37929227194915558802161 \) = \( 41^{14} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( -\frac{441214800307260660781138374510790}{37929227194915558802161} a^{3} + \frac{1039401766167146451176141068828538}{37929227194915558802161} a^{2} - \frac{85482461557271846976636103393445}{37929227194915558802161} a - \frac{325440676452210604287018495514898}{37929227194915558802161} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(\frac{65}{4} a^{3} - 36 a^{2} - 17 a + \frac{117}{4} : -3 a^{3} + 9 a^{2} + \frac{171}{8} a - 22 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{3} - 3 a^{2} - a + 4\right) \) \(41\) \(2\) \(I_{14}\) Non-split multiplicative \(1\) \(1\) \(14\) \(14\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(7\) 7B.1.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 7 and 14.
Its isogeny class 41.2-a consists of curves linked by isogenies of degrees dividing 14.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.