Properties

Label 4.4.725.1-41.2-a4
Base field 4.4.725.1
Conductor norm \( 41 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.725.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 3 x^{2} + x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 1, -3, -1, 1]))
 
gp: K = nfinit(Polrev([1, 1, -3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 1, -3, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-a^{2}-a+2\right){x}{y}+{y}={x}^{3}+\left(a^{3}-4a\right){x}^{2}+\left(1080a^{3}-2888a^{2}+790a+550\right){x}+46346a^{3}-112940a^{2}+15137a+31683\)
sage: E = EllipticCurve([K([2,-1,-1,1]),K([0,-4,0,1]),K([1,0,0,0]),K([550,790,-2888,1080]),K([31683,15137,-112940,46346])])
 
gp: E = ellinit([Polrev([2,-1,-1,1]),Polrev([0,-4,0,1]),Polrev([1,0,0,0]),Polrev([550,790,-2888,1080]),Polrev([31683,15137,-112940,46346])], K);
 
magma: E := EllipticCurve([K![2,-1,-1,1],K![0,-4,0,1],K![1,0,0,0],K![550,790,-2888,1080],K![31683,15137,-112940,46346]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-3a^2-a+4)\) = \((a^3-3a^2-a+4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 41 \) = \(41\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((147877a^3-319109a^2+16203a+500981)\) = \((a^3-3a^2-a+4)^{14}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -37929227194915558802161 \) = \(-41^{14}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{441214800307260660781138374510790}{37929227194915558802161} a^{3} + \frac{1039401766167146451176141068828538}{37929227194915558802161} a^{2} - \frac{85482461557271846976636103393445}{37929227194915558802161} a - \frac{325440676452210604287018495514898}{37929227194915558802161} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{65}{4} a^{3} - 36 a^{2} - 17 a + \frac{117}{4} : -3 a^{3} + 9 a^{2} + \frac{171}{8} a - 22 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.71084339394513818426245014735782776319 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 0.646801491704872 \)
Analytic order of Ш: \( 49 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-3a^2-a+4)\) \(41\) \(2\) \(I_{14}\) Non-split multiplicative \(1\) \(1\) \(14\) \(14\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(7\) 7B.1.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 7 and 14.
Its isogeny class 41.2-a consists of curves linked by isogenies of degrees dividing 14.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.