Properties

Base field 4.4.725.1
Label 4.4.725.1-41.1-a3
Conductor \((41,2 a^{2} - a - 3)\)
Conductor norm \( 41 \)
CM no
base-change no
Q-curve no
Torsion order \( 14 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 4.4.725.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 3 x^{2} + x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 1, -3, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^4 - x^3 - 3*x^2 + x + 1)
 
gp (2.8): K = nfinit(a^4 - a^3 - 3*a^2 + a + 1);
 

Weierstrass equation

\( y^2 + \left(a + 1\right) x y + \left(a + 1\right) y = x^{3} + \left(-a^{3} + 2 a^{2} - 3\right) x^{2} + \left(-6 a^{3} + 16 a^{2} - 41\right) x + 21 a^{3} - 54 a^{2} - 19 a + 127 \)
magma: E := ChangeRing(EllipticCurve([a + 1, -a^3 + 2*a^2 - 3, a + 1, -6*a^3 + 16*a^2 - 41, 21*a^3 - 54*a^2 - 19*a + 127]),K);
 
sage: E = EllipticCurve(K, [a + 1, -a^3 + 2*a^2 - 3, a + 1, -6*a^3 + 16*a^2 - 41, 21*a^3 - 54*a^2 - 19*a + 127])
 
gp (2.8): E = ellinit([a + 1, -a^3 + 2*a^2 - 3, a + 1, -6*a^3 + 16*a^2 - 41, 21*a^3 - 54*a^2 - 19*a + 127],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((41,2 a^{2} - a - 3)\) = \( \left(2 a^{2} - a - 3\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 41 \) = \( 41 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((1681,a^{3} - a^{2} - 2 a + 909,a + 757,a^{2} - a + 1096)\) = \( \left(2 a^{2} - a - 3\right)^{2} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 1681 \) = \( 41^{2} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( \frac{4102114369346}{1681} a^{3} - \frac{5988741927479}{1681} a^{2} - \frac{9370177909896}{1681} a + \frac{8524056894480}{1681} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/14\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(3 a^{3} - 2 a^{2} - 8 a + 1 : a^{3} - 6 a - 3 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(2 a^{2} - a - 3\right) \) \(41\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(7\) 7B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 7 and 14.
Its isogeny class 41.1-a consists of curves linked by isogenies of degrees dividing 14.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.