Base field 4.4.725.1
Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 3 x^{2} + x + 1 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 1, -3, -1, 1]))
gp: K = nfinit(Polrev([1, 1, -3, -1, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 1, -3, -1, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([1,-2,-1,1]),K([0,3,0,-1]),K([0,1,0,0]),K([1,1,-1,0]),K([0,0,0,0])])
gp: E = ellinit([Polrev([1,-2,-1,1]),Polrev([0,3,0,-1]),Polrev([0,1,0,0]),Polrev([1,1,-1,0]),Polrev([0,0,0,0])], K);
magma: E := EllipticCurve([K![1,-2,-1,1],K![0,3,0,-1],K![0,1,0,0],K![1,1,-1,0],K![0,0,0,0]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((-a^3-3a^2+8)\) | = | \((-a^3-3a^2+8)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 3169 \) | = | \(3169\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((-5a^3+7a^2+12a-1)\) | = | \((-a^3-3a^2+8)\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 3169 \) | = | \(3169\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( \frac{2653932}{3169} a^{3} + \frac{5992969}{3169} a^{2} + \frac{3082469}{3169} a + \frac{6495478}{3169} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(1\) |
Generator | $\left(a^{3} - a^{2} - 2 a + 1 : -a : 1\right)$ |
Height | \(0.038571329856688113857415227617945202064\) |
Torsion structure: | \(\Z/2\Z\) |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| |
Torsion generator: | $\left(a^{2} - a - 1 : -a : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 1 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(1\) | ||
Regulator: | \( 0.038571329856688113857415227617945202064 \) | ||
Period: | \( 1961.8668588572914538766656715505601345 \) | ||
Tamagawa product: | \( 1 \) | ||
Torsion order: | \(2\) | ||
Leading coefficient: | \( 2.81038060887703 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((-a^3-3a^2+8)\) | \(3169\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2.
Its isogeny class
3169.1-b
consists of curves linked by isogenies of
degree 2.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.