Properties

Label 4.4.725.1-121.2-a5
Base field 4.4.725.1
Conductor norm \( 121 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.725.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 3 x^{2} + x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 1, -3, -1, 1]))
 
gp: K = nfinit(Polrev([1, 1, -3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 1, -3, -1, 1]);
 

Weierstrass equation

\({y}^2+a^{2}{x}{y}+\left(a^{3}-a^{2}-a+2\right){y}={x}^{3}+\left(a^{3}-a^{2}-2a+1\right){x}^{2}+\left(-45a^{3}+81a^{2}+95a-146\right){x}-374a^{3}+588a^{2}+831a-909\)
sage: E = EllipticCurve([K([0,0,1,0]),K([1,-2,-1,1]),K([2,-1,-1,1]),K([-146,95,81,-45]),K([-909,831,588,-374])])
 
gp: E = ellinit([Polrev([0,0,1,0]),Polrev([1,-2,-1,1]),Polrev([2,-1,-1,1]),Polrev([-146,95,81,-45]),Polrev([-909,831,588,-374])], K);
 
magma: E := EllipticCurve([K![0,0,1,0],K![1,-2,-1,1],K![2,-1,-1,1],K![-146,95,81,-45],K![-909,831,588,-374]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((3a^3-3a^2-6a+2)\) = \((-a^3+2a^2+a-3)\cdot(-a^3+3a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 121 \) = \(11\cdot11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-367a^3+367a^2+734a-98)\) = \((-a^3+2a^2+a-3)^{5}\cdot(-a^3+3a)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 25937424601 \) = \(11^{5}\cdot11^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1836359985305255}{161051} a^{3} + \frac{1836359985305255}{161051} a^{2} + \frac{3672719970610510}{161051} a + \frac{1134932348617143}{161051} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(7 a^{3} - 9 a^{2} - 16 a + 10 : -2 a^{3} + 2 a^{2} + 3 a - 2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 3.9081486506716153372034804328601499649 \)
Tamagawa product: \( 25 \)  =  \(5\cdot5\)
Torsion order: \(2\)
Leading coefficient: \( 0.907156231665818 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+2a^2+a-3)\) \(11\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)
\((-a^3+3a)\) \(11\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.1.4[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 5, 10 and 20.
Its isogeny class 121.2-a consists of curves linked by isogenies of degrees dividing 20.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.