Properties

Base field 4.4.5125.1
Label 4.4.5125.1-55.2-d
Conductor 55.2
Rank \( 0 \)

Related objects

Learn more

Base field 4.4.5125.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 6 x^{2} + 7 x + 11 \); class number \(1\).

Elliptic curves in class 55.2-d over 4.4.5125.1

Isogeny class 55.2-d contains 4 curves linked by isogenies of degrees dividing 6.

Curve label Weierstrass Coefficients
55.2-d1 \( \bigl[a^{3} - a^{2} - 3 a\) , \( -a^{3} + 2 a^{2} + 4 a - 5\) , \( a^{3} - a^{2} - 3 a + 1\) , \( a^{3} - 6 a^{2} + a + 19\) , \( -a^{3} + a^{2} + 5 a - 3\bigr] \)
55.2-d2 \( \bigl[a^{3} - a^{2} - 3 a\) , \( -a^{3} + 2 a^{2} + 4 a - 5\) , \( a^{3} - a^{2} - 3 a + 1\) , \( 6 a^{3} - 21 a^{2} - 4 a + 34\) , \( 14 a^{3} - 58 a^{2} + 10 a + 113\bigr] \)
55.2-d3 \( \bigl[a\) , \( -a + 1\) , \( a^{3} - a^{2} - 3 a\) , \( 189 a^{3} - 180 a^{2} - 756 a - 392\) , \( 2259 a^{3} - 2017 a^{2} - 9352 a - 4703\bigr] \)
55.2-d4 \( \bigl[a\) , \( -a + 1\) , \( a^{3} - a^{2} - 3 a\) , \( 4 a^{3} - 15 a^{2} - a + 28\) , \( 85 a^{3} - 41 a^{2} - 410 a - 280\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrr} 1 & 2 & 6 & 3 \\ 2 & 1 & 3 & 6 \\ 6 & 3 & 1 & 2 \\ 3 & 6 & 2 & 1 \end{array}\right)\)

Isogeny graph