Properties

Label 4.4.5125.1-55.1-f1
Base field 4.4.5125.1
Conductor norm \( 55 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.5125.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 6 x^{2} + 7 x + 11 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([11, 7, -6, -2, 1]))
 
gp: K = nfinit(Polrev([11, 7, -6, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![11, 7, -6, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-4a-4\right){x}{y}+{y}={x}^{3}+{x}^{2}+\left(-218a^{3}-146a^{2}+869a+827\right){x}-4041a^{3}-2859a^{2}+16568a+16518\)
sage: E = EllipticCurve([K([-4,-4,0,1]),K([1,0,0,0]),K([1,0,0,0]),K([827,869,-146,-218]),K([16518,16568,-2859,-4041])])
 
gp: E = ellinit([Polrev([-4,-4,0,1]),Polrev([1,0,0,0]),Polrev([1,0,0,0]),Polrev([827,869,-146,-218]),Polrev([16518,16568,-2859,-4041])], K);
 
magma: E := EllipticCurve([K![-4,-4,0,1],K![1,0,0,0],K![1,0,0,0],K![827,869,-146,-218],K![16518,16568,-2859,-4041]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-4a)\) = \((-a^3+a^2+4a+1)\cdot(-a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 55 \) = \(5\cdot11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^3+7a+11)\) = \((-a^3+a^2+4a+1)^{2}\cdot(-a)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 3025 \) = \(5^{2}\cdot11^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{287491768525988172527}{605} a^{3} + \frac{1065548612442610734672}{605} a^{2} - \frac{93261222637284540808}{605} a - \frac{370660991375398969213}{121} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{9}{4} a^{3} - \frac{11}{4} a^{2} + 11 a + \frac{29}{2} : \frac{37}{8} a^{3} + \frac{11}{4} a^{2} - \frac{135}{8} a - \frac{31}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 70.554029366615347230204514205331414073 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 0.985541431965213 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+a^2+4a+1)\) \(5\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((-a)\) \(11\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 55.1-f consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.