Properties

Label 4.4.5125.1-475.2-a1
Base field 4.4.5125.1
Conductor norm \( 475 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.5125.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 6 x^{2} + 7 x + 11 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([11, 7, -6, -2, 1]))
 
gp: K = nfinit(Polrev([11, 7, -6, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![11, 7, -6, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-3\right){y}={x}^{3}+\left(a^{3}-6a-5\right){x}^{2}+\left(-6a^{3}-2a^{2}+30a+27\right){x}-3a^{3}-4a^{2}+6a+7\)
sage: E = EllipticCurve([K([0,0,0,0]),K([-5,-6,0,1]),K([-3,0,1,0]),K([27,30,-2,-6]),K([7,6,-4,-3])])
 
gp: E = ellinit([Polrev([0,0,0,0]),Polrev([-5,-6,0,1]),Polrev([-3,0,1,0]),Polrev([27,30,-2,-6]),Polrev([7,6,-4,-3])], K);
 
magma: E := EllipticCurve([K![0,0,0,0],K![-5,-6,0,1],K![-3,0,1,0],K![27,30,-2,-6],K![7,6,-4,-3]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^3-9a-2)\) = \((-a^3+a^2+4a+1)^{2}\cdot(2a^2-a-6)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 475 \) = \(5^{2}\cdot19\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-15a^3-30a^2+110a+170)\) = \((-a^3+a^2+4a+1)^{6}\cdot(2a^2-a-6)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 5640625 \) = \(5^{6}\cdot19^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{97722368}{361} a^{3} - \frac{362807296}{361} a^{2} + \frac{32821248}{361} a + \frac{630816768}{361} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{2} + a - 1 : a^{3} + a^{2} - 3 a - 3 : 1\right)$
Height \(0.12510967208128292808850156071241600457\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.12510967208128292808850156071241600457 \)
Period: \( 316.77972742222254348346266893693895828 \)
Tamagawa product: \( 2 \)  =  \(1\cdot2\)
Torsion order: \(1\)
Leading coefficient: \( 4.42885354073264 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+a^2+4a+1)\) \(5\) \(1\) \(I_0^{*}\) Additive \(1\) \(2\) \(6\) \(0\)
\((2a^2-a-6)\) \(19\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 475.2-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.