Properties

Label 4.4.4913.1-47.1-b4
Base field 4.4.4913.1
Conductor norm \( 47 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.4913.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 6 x^{2} + x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 1, -6, -1, 1]))
 
gp: K = nfinit(Polrev([1, 1, -6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 1, -6, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a^{2}-a-2\right){y}={x}^{3}+\left(-\frac{1}{2}a^{3}+4a+\frac{5}{2}\right){x}^{2}+\left(10a^{3}-23a^{2}-18a-2\right){x}+11a^{3}-39a^{2}+16a+10\)
sage: E = EllipticCurve([K([1,0,0,0]),K([5/2,4,0,-1/2]),K([-2,-1,1,0]),K([-2,-18,-23,10]),K([10,16,-39,11])])
 
gp: E = ellinit([Polrev([1,0,0,0]),Polrev([5/2,4,0,-1/2]),Polrev([-2,-1,1,0]),Polrev([-2,-18,-23,10]),Polrev([10,16,-39,11])], K);
 
magma: E := EllipticCurve([K![1,0,0,0],K![5/2,4,0,-1/2],K![-2,-1,1,0],K![-2,-18,-23,10],K![10,16,-39,11]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-2)\) = \((a^2-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 47 \) = \(47\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-3/2a^3-a^2+13a+3/2)\) = \((a^2-2)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 2209 \) = \(47^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{561671912500}{2209} a^{3} - \frac{741986957344}{2209} a^{2} - \frac{3079953887744}{2209} a + \frac{1639520290065}{2209} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-a^{2} + 3 a : -a + 1 : 1\right)$ $\left(\frac{3}{4} a^{3} + \frac{5}{4} a^{2} - \frac{35}{4} a - \frac{13}{4} : -\frac{3}{8} a^{3} - \frac{9}{8} a^{2} + \frac{39}{8} a + \frac{21}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1769.5068312963507505565400653731182680 \)
Tamagawa product: \( 2 \)
Torsion order: \(4\)
Leading coefficient: \( 3.15565033334207 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-2)\) \(47\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 47.1-b consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.