Properties

Label 4.4.4913.1-16.3-a2
Base field 4.4.4913.1
Conductor norm \( 16 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.4913.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 6 x^{2} + x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 1, -6, -1, 1]))
 
gp: K = nfinit(Polrev([1, 1, -6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 1, -6, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-2\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a^{3}+a^{2}+5a-1\right){x}^{2}+\left(\frac{83}{2}a^{3}-20a^{2}-265a-\frac{177}{2}\right){x}+291a^{3}-149a^{2}-1820a-593\)
sage: E = EllipticCurve([K([-2,-1,1,0]),K([-1,5,1,-1]),K([1,1,0,0]),K([-177/2,-265,-20,83/2]),K([-593,-1820,-149,291])])
 
gp: E = ellinit([Polrev([-2,-1,1,0]),Polrev([-1,5,1,-1]),Polrev([1,1,0,0]),Polrev([-177/2,-265,-20,83/2]),Polrev([-593,-1820,-149,291])], K);
 
magma: E := EllipticCurve([K![-2,-1,1,0],K![-1,5,1,-1],K![1,1,0,0],K![-177/2,-265,-20,83/2],K![-593,-1820,-149,291]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-a^2-5a+1)\) = \((-a-1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(4^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^3-17a-12)\) = \((-a-1)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -65536 \) = \(-4^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 87258779625 a^{3} - 117290446883 a^{2} - 483186323445 a + 253557056263 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{9}{4} a^{3} - \frac{7}{4} a^{2} - \frac{55}{4} a - \frac{11}{4} : \frac{19}{8} a^{3} - \frac{7}{8} a^{2} - \frac{123}{8} a - \frac{33}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 502.93662602983293421190571437260698527 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 1.79382424923250 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a-1)\) \(4\) \(1\) \(IV^{*}\) Additive \(1\) \(2\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 16.3-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.