Properties

Label 4.4.4913.1-16.1-c3
Base field 4.4.4913.1
Conductor norm \( 16 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.4913.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 6 x^{2} + x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 1, -6, -1, 1]))
 
gp: K = nfinit(Polrev([1, 1, -6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 1, -6, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-\frac{1}{2}a^{3}+a^{2}+2a-\frac{3}{2}\right){x}{y}+\left(a^{2}-a-3\right){y}={x}^{3}+\left(-a^{3}+a^{2}+4a+1\right){x}^{2}+\left(\frac{223}{2}a^{3}-62a^{2}-718a-\frac{489}{2}\right){x}+\frac{2433}{2}a^{3}-647a^{2}-7657a-\frac{5039}{2}\)
sage: E = EllipticCurve([K([-3/2,2,1,-1/2]),K([1,4,1,-1]),K([-3,-1,1,0]),K([-489/2,-718,-62,223/2]),K([-5039/2,-7657,-647,2433/2])])
 
gp: E = ellinit([Polrev([-3/2,2,1,-1/2]),Polrev([1,4,1,-1]),Polrev([-3,-1,1,0]),Polrev([-489/2,-718,-62,223/2]),Polrev([-5039/2,-7657,-647,2433/2])], K);
 
magma: E := EllipticCurve([K![-3/2,2,1,-1/2],K![1,4,1,-1],K![-3,-1,1,0],K![-489/2,-718,-62,223/2],K![-5039/2,-7657,-647,2433/2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2)\) = \((1/2a^3-a^2-2a+5/2)\cdot(-a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(4\cdot4\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-96a^3+96a^2+480a-128)\) = \((1/2a^3-a^2-2a+5/2)^{10}\cdot(-a-1)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1073741824 \) = \(4^{10}\cdot4^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{5496753136423}{1024} a^{3} + \frac{5496753136423}{1024} a^{2} + \frac{27483765682115}{1024} a + \frac{8583318742029}{1024} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{33}{8} a^{3} - \frac{9}{4} a^{2} - 22 a - \frac{35}{8} : \frac{3}{4} a^{3} - \frac{7}{8} a^{2} - \frac{49}{8} a + \frac{17}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 2.8573220848731720593629293189962738195 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 0.509560586606495 \)
Analytic order of Ш: \( 25 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/2a^3-a^2-2a+5/2)\) \(4\) \(2\) \(I_{10}\) Non-split multiplicative \(1\) \(1\) \(10\) \(10\)
\((-a-1)\) \(4\) \(1\) \(I_{5}\) Non-split multiplicative \(1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 16.1-c consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.