Properties

Label 4.4.4913.1-16.1-a4
Base field 4.4.4913.1
Conductor norm \( 16 \)
CM no
Base change no
Q-curve yes
Torsion order \( 10 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.4913.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 6 x^{2} + x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 1, -6, -1, 1]))
 
gp: K = nfinit(Polrev([1, 1, -6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 1, -6, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(\frac{1}{2}a^{3}-3a-\frac{3}{2}\right){y}={x}^{3}+\left(-a^{2}+3\right){x}^{2}+\left(\frac{3}{2}a^{3}-a^{2}-9a-\frac{3}{2}\right){x}+\frac{1}{2}a^{3}-a^{2}-3a+\frac{5}{2}\)
sage: E = EllipticCurve([K([0,1,0,0]),K([3,0,-1,0]),K([-3/2,-3,0,1/2]),K([-3/2,-9,-1,3/2]),K([5/2,-3,-1,1/2])])
 
gp: E = ellinit([Polrev([0,1,0,0]),Polrev([3,0,-1,0]),Polrev([-3/2,-3,0,1/2]),Polrev([-3/2,-9,-1,3/2]),Polrev([5/2,-3,-1,1/2])], K);
 
magma: E := EllipticCurve([K![0,1,0,0],K![3,0,-1,0],K![-3/2,-3,0,1/2],K![-3/2,-9,-1,3/2],K![5/2,-3,-1,1/2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2)\) = \((1/2a^3-a^2-2a+5/2)\cdot(-a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(4\cdot4\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-4a^3+4a^2+20a-4)\) = \((1/2a^3-a^2-2a+5/2)^{2}\cdot(-a-1)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 4096 \) = \(4^{2}\cdot4^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{750141}{16} a^{3} + \frac{750141}{16} a^{2} + \frac{3750705}{16} a + 73170 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/10\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{1}{2} a^{3} - 3 a - \frac{3}{2} : -a - 2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 2112.1179823697967838635370670561539979 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(10\)
Leading coefficient: \( 1.20532671765773 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/2a^3-a^2-2a+5/2)\) \(4\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((-a-1)\) \(4\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 16.1-a consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.