Properties

Label 4.4.4752.1-9.1-c3
Base field 4.4.4752.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 6 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.4752.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 3 x^{2} + 4 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 4, -3, -2, 1]))
 
gp: K = nfinit(Polrev([1, 4, -3, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 4, -3, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-a^{2}-3a+2\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a^{3}-a^{2}-2a\right){x}^{2}+\left(-11a^{3}+26a^{2}+28a-51\right){x}+33a^{3}-73a^{2}-83a+149\)
sage: E = EllipticCurve([K([2,-3,-1,1]),K([0,-2,-1,1]),K([1,1,0,0]),K([-51,28,26,-11]),K([149,-83,-73,33])])
 
gp: E = ellinit([Polrev([2,-3,-1,1]),Polrev([0,-2,-1,1]),Polrev([1,1,0,0]),Polrev([-51,28,26,-11]),Polrev([149,-83,-73,33])], K);
 
magma: E := EllipticCurve([K![2,-3,-1,1],K![0,-2,-1,1],K![1,1,0,0],K![-51,28,26,-11],K![149,-83,-73,33]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-a-2)\) = \((a^3-a^2-4a+1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(3^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((9a^2-18a)\) = \((a^3-a^2-4a+1)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -19683 \) = \(-3^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -2937600 a^{3} + 2296512 a^{2} + 11601792 a + 2403648 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a^{3} - 3 a^{2} - 3 a + 7 : -5 a^{3} + 12 a^{2} + 13 a - 25 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1652.3085624024896199452548935833695409 \)
Tamagawa product: \( 2 \)
Torsion order: \(6\)
Leading coefficient: \( 1.33162037712294 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-a^2-4a+1)\) \(3\) \(2\) \(III^{*}\) Additive \(1\) \(2\) \(9\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 9.1-c consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.