Properties

Label 4.4.4205.1-25.2-d3
Base field 4.4.4205.1
Conductor norm \( 25 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.4205.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 5 x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, -5, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-a^{2}-5a-1\right){x}{y}+\left(a^{2}-2a-1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-14a^{3}+18a^{2}+78a-35\right){x}-99a^{3}+192a^{2}+308a-127\)
sage: E = EllipticCurve([K([-1,-5,-1,1]),K([-1,1,0,0]),K([-1,-2,1,0]),K([-35,78,18,-14]),K([-127,308,192,-99])])
 
gp: E = ellinit([Polrev([-1,-5,-1,1]),Polrev([-1,1,0,0]),Polrev([-1,-2,1,0]),Polrev([-35,78,18,-14]),Polrev([-127,308,192,-99])], K);
 
magma: E := EllipticCurve([K![-1,-5,-1,1],K![-1,1,0,0],K![-1,-2,1,0],K![-35,78,18,-14],K![-127,308,192,-99]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^3+3a^2+8a)\) = \((-2a^3+3a^2+8a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 25 \) = \(25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-357a^3+357a^2+2142a-3091)\) = \((-2a^3+3a^2+8a)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -95367431640625 \) = \(-25^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{10734742367641011}{1953125} a^{3} - \frac{88401247642886432}{9765625} a^{2} - \frac{211172088296263056}{9765625} a + \frac{82957460988647978}{9765625} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{7}{4} a^{3} + 4 a^{2} + \frac{7}{2} a - \frac{9}{2} : \frac{9}{4} a^{3} - \frac{29}{8} a^{2} - \frac{33}{4} a : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 56.861834749161317823617926215571563874 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.75375072861358 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^3+3a^2+8a)\) \(25\) \(2\) \(I_{10}\) Non-split multiplicative \(1\) \(1\) \(10\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.4.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 25.2-d consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.