Properties

Label 4.4.4205.1-25.2-c3
Base field 4.4.4205.1
Conductor norm \( 25 \)
CM no
Base change no
Q-curve no
Torsion order \( 6 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.4205.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 5 x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, -5, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-2a-2\right){x}{y}+\left(-a^{3}+2a^{2}+3a\right){y}={x}^{3}+\left(a^{2}-a-2\right){x}^{2}+\left(-9a^{3}+14a^{2}+35a-12\right){x}-14a^{3}+23a^{2}+55a-22\)
sage: E = EllipticCurve([K([-2,-2,1,0]),K([-2,-1,1,0]),K([0,3,2,-1]),K([-12,35,14,-9]),K([-22,55,23,-14])])
 
gp: E = ellinit([Polrev([-2,-2,1,0]),Polrev([-2,-1,1,0]),Polrev([0,3,2,-1]),Polrev([-12,35,14,-9]),Polrev([-22,55,23,-14])], K);
 
magma: E := EllipticCurve([K![-2,-2,1,0],K![-2,-1,1,0],K![0,3,2,-1],K![-12,35,14,-9],K![-22,55,23,-14]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^3+3a^2+8a)\) = \((-2a^3+3a^2+8a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 25 \) = \(25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^3+a^2+6a+12)\) = \((-2a^3+3a^2+8a)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 15625 \) = \(25^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{15765666}{125} a^{3} + \frac{39249406}{125} a^{2} + \frac{15544741}{125} a + \frac{1058539}{125} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(145 a^{3} - 239 a^{2} - 570 a + 224 : 3102 a^{3} - 5109 a^{2} - 12205 a + 4794 : 1\right)$
Height \(0.48337152294822429867320990191133879314\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a^{3} + a^{2} + 5 a : -a^{3} + a^{2} + 5 a + 2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.48337152294822429867320990191133879314 \)
Period: \( 765.00307766028140437955179583005706774 \)
Tamagawa product: \( 3 \)
Torsion order: \(6\)
Leading coefficient: \( 1.90081560465370 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^3+3a^2+8a)\) \(25\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 25.2-c consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.