Properties

Label 4.4.4205.1-25.1-a3
Base field 4.4.4205.1
Conductor norm \( 25 \)
CM no
Base change no
Q-curve yes
Torsion order \( 5 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.4205.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 5 x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, -5, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-a^{3}+2a^{2}+4a-1\right){x}{y}+a{y}={x}^{3}+\left(-a^{3}+2a^{2}+4a-2\right){x}^{2}+\left(-5a^{3}+9a^{2}+20a-8\right){x}+12a^{3}-19a^{2}-46a+18\)
sage: E = EllipticCurve([K([-1,4,2,-1]),K([-2,4,2,-1]),K([0,1,0,0]),K([-8,20,9,-5]),K([18,-46,-19,12])])
 
gp: E = ellinit([Polrev([-1,4,2,-1]),Polrev([-2,4,2,-1]),Polrev([0,1,0,0]),Polrev([-8,20,9,-5]),Polrev([18,-46,-19,12])], K);
 
magma: E := EllipticCurve([K![-1,4,2,-1],K![-2,4,2,-1],K![0,1,0,0],K![-8,20,9,-5],K![18,-46,-19,12]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+2a^2+4a)\) = \((a^3-a^2-5a)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 25 \) = \(5^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^3+a^2+6a-11)\) = \((a^3-a^2-5a)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 15625 \) = \(5^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -3515 a^{3} + 3515 a^{2} + 21090 a - 7688 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/5\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(0 : 2 a^{3} - 3 a^{2} - 8 a + 3 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1499.9461765589710204426272719278663285 \)
Tamagawa product: \( 1 \)
Torsion order: \(5\)
Leading coefficient: \( 0.925236307138417 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-a^2-5a)\) \(5\) \(1\) \(I_0^{*}\) Additive \(1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B
\(5\) 5B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 5 and 15.
Its isogeny class 25.1-a consists of curves linked by isogenies of degrees dividing 15.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.