Properties

Label 4.4.3600.1-225.1-e7
Base field \(\Q(\sqrt{3}, \sqrt{5})\)
Conductor norm \( 225 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 16 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{3}, \sqrt{5})\)

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 7 x^{2} + 8 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 8, -7, -2, 1]))
 
gp: K = nfinit(Polrev([1, 8, -7, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 8, -7, -2, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-80{x}+242\)
sage: E = EllipticCurve([K([1,0,0,0]),K([1,0,0,0]),K([1,0,0,0]),K([-80,0,0,0]),K([242,0,0,0])])
 
gp: E = ellinit([Polrev([1,0,0,0]),Polrev([1,0,0,0]),Polrev([1,0,0,0]),Polrev([-80,0,0,0]),Polrev([242,0,0,0])], K);
 
magma: E := EllipticCurve([K![1,0,0,0],K![1,0,0,0],K![1,0,0,0],K![-80,0,0,0],K![242,0,0,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^2+a+4)\) = \((-2/7a^3+3/7a^2+19/7a-10/7)\cdot(4/7a^3-6/7a^2-24/7a+13/7)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 225 \) = \(9\cdot25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((15)\) = \((-2/7a^3+3/7a^2+19/7a-10/7)^{2}\cdot(4/7a^3-6/7a^2-24/7a+13/7)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 50625 \) = \(9^{2}\cdot25^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{56667352321}{15} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(2\)
Generators $\left(\frac{75}{7} a^{3} - \frac{158}{7} a^{2} - \frac{1019}{14} a + \frac{1387}{14} : \frac{1557}{14} a^{3} - \frac{6575}{28} a^{2} - \frac{21085}{28} a + \frac{27267}{28} : 1\right)$ $\left(-\frac{75}{7} a^{3} + \frac{67}{7} a^{2} + \frac{1201}{14} a + \frac{101}{7} : \frac{1707}{14} a^{3} - \frac{3035}{28} a^{2} - \frac{27295}{28} a - \frac{3153}{28} : 1\right)$
Heights \(0.92532204965083266630722942221207397146\) \(0.92532204965083266630722942221207397146\)
Torsion structure: \(\Z/2\Z\oplus\Z/8\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(2 a^{2} - 2 a - 11 : -a^{2} + a + 5 : 1\right)$ $\left(\frac{4}{7} a^{3} - \frac{6}{7} a^{2} - \frac{24}{7} a + \frac{62}{7} : \frac{16}{7} a^{3} - \frac{24}{7} a^{2} - \frac{96}{7} a + \frac{94}{7} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(2\)
Regulator: \( 0.78050477292764989331613120471349248443 \)
Period: \( 985.14515725135648801732976819257502568 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(16\)
Leading coefficient: \( 3.20379373858852 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2/7a^3+3/7a^2+19/7a-10/7)\) \(9\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\((4/7a^3-6/7a^2-24/7a+13/7)\) \(25\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 8, 16 and 32.
Its isogeny class 225.1-e consists of curves linked by isogenies of degrees dividing 64.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 10 elliptic curves:

Base field Curve
\(\Q\) 15.a4
\(\Q\) 75.b4
\(\Q\) 720.c4
\(\Q\) 3600.u4
\(\Q(\sqrt{3}) \) 2.2.12.1-75.1-b7
\(\Q(\sqrt{3}) \) 2.2.12.1-1875.1-d7
\(\Q(\sqrt{5}) \) 2.2.5.1-45.1-a8
\(\Q(\sqrt{5}) \) a curve with conductor norm 103680 (not in the database)
\(\Q(\sqrt{15}) \) 2.2.60.1-15.1-d8
\(\Q(\sqrt{15}) \) 2.2.60.1-15.1-c8