Properties

Label 4.4.2777.1-968.2-b4
Base field 4.4.2777.1
Conductor norm \( 968 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.2777.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 1, -4, -1, 1]))
 
gp: K = nfinit(Polrev([2, 1, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 1, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-a^{2}-2a+2\right){x}{y}+\left(a^{3}-3a\right){y}={x}^{3}+\left(a^{3}-4a-2\right){x}^{2}+\left(-10a^{3}+106a^{2}-47a-348\right){x}-482a^{3}+804a^{2}+1370a-1417\)
sage: E = EllipticCurve([K([2,-2,-1,1]),K([-2,-4,0,1]),K([0,-3,0,1]),K([-348,-47,106,-10]),K([-1417,1370,804,-482])])
 
gp: E = ellinit([Polrev([2,-2,-1,1]),Polrev([-2,-4,0,1]),Polrev([0,-3,0,1]),Polrev([-348,-47,106,-10]),Polrev([-1417,1370,804,-482])], K);
 
magma: E := EllipticCurve([K![2,-2,-1,1],K![-2,-4,0,1],K![0,-3,0,1],K![-348,-47,106,-10],K![-1417,1370,804,-482]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+a+10)\) = \((-a)^{3}\cdot(-a^3+2a^2+2a-1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 968 \) = \(2^{3}\cdot11^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-26a^3-149a^2+137a+350)\) = \((-a)^{11}\cdot(-a^3+2a^2+2a-1)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -3628156928 \) = \(-2^{11}\cdot11^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 34259927531436 a^{3} - 57543520518160 a^{2} - 97932989693671 a + 100819215025068 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{1}{4} a^{3} + \frac{17}{4} a^{2} - \frac{9}{2} a - 15 : \frac{19}{8} a^{3} - \frac{47}{8} a^{2} - \frac{27}{4} a + 11 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 25.460969396032248937197236125377379634 \)
Tamagawa product: \( 4 \)  =  \(1\cdot2^{2}\)
Torsion order: \(2\)
Leading coefficient: \( 1.93262229951957 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(2\) \(1\) \(II^{*}\) Additive \(-1\) \(3\) \(11\) \(0\)
\((-a^3+2a^2+2a-1)\) \(11\) \(4\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 968.2-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.