Properties

Base field 4.4.2777.1
Label 4.4.2777.1-8.2-a2
Conductor \((8,a^{3} - 2 a^{2} - 2 a + 4)\)
Conductor norm \( 8 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Base field 4.4.2777.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + x + 2 \); class number \(1\).

sage: x = polygen(QQ); K.<a> = NumberField(x^4 - x^3 - 4*x^2 + x + 2)
 
gp: K = nfinit(a^4 - a^3 - 4*a^2 + a + 2);
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 1, -4, -1, 1]);
 

Weierstrass equation

\( y^2 + \left(a^{2} - a - 2\right) x y + \left(a^{3} - a^{2} - 2 a + 2\right) y = x^{3} + \left(-a^{3} + a^{2} + 4 a\right) x^{2} + \left(-a^{3} - a^{2} + 4 a + 5\right) x - a^{3} - a^{2} + 4 a + 1 \)
sage: E = EllipticCurve(K, [a^2 - a - 2, -a^3 + a^2 + 4*a, a^3 - a^2 - 2*a + 2, -a^3 - a^2 + 4*a + 5, -a^3 - a^2 + 4*a + 1])
 
gp: E = ellinit([a^2 - a - 2, -a^3 + a^2 + 4*a, a^3 - a^2 - 2*a + 2, -a^3 - a^2 + 4*a + 5, -a^3 - a^2 + 4*a + 1],K)
 
magma: E := ChangeRing(EllipticCurve([a^2 - a - 2, -a^3 + a^2 + 4*a, a^3 - a^2 - 2*a + 2, -a^3 - a^2 + 4*a + 5, -a^3 - a^2 + 4*a + 1]),K);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((8,a^{3} - 2 a^{2} - 2 a + 4)\) = \( \left(-a\right)^{3} \)
sage: E.conductor()
 
magma: Conductor(E);
 
\(N(\mathfrak{N}) \) = \( 8 \) = \( 2^{3} \)
sage: E.conductor().norm()
 
magma: Norm(Conductor(E));
 
\(\mathfrak{D}\) = \((2048,a + 490,a^{3} - a^{2} - 3 a + 654,a^{2} - a + 1074)\) = \( \left(-a\right)^{11} \)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
\(N(\mathfrak{D})\) = \( 2048 \) = \( 2^{11} \)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
\(j\) = \( -601 a^{3} + 1330 a^{2} + 1931 a - 2180 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.

sage: E.rank()
 
magma: Rank(E);
 

Regulator: not available

sage: gens = E.gens(); gens
 
magma: gens := [P:P in Generators(E)|Order(P) eq 0]; gens;
 
sage: E.regulator_of_points(gens)
 
magma: Regulator(gens);
 

Torsion subgroup

Structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Generator: $\left(-a : -1 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a\right) \) \(2\) \(1\) \(II^*\) Additive \(1\) \(3\) \(11\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 8.2-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.