Properties

Label 4.4.2777.1-512.3-n8
Base field 4.4.2777.1
Conductor norm \( 512 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.2777.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 1, -4, -1, 1]))
 
gp: K = nfinit(Polrev([2, 1, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 1, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-a^{2}-3a+2\right){x}{y}+\left(a^{2}-a-2\right){y}={x}^{3}+\left(a^{2}-2\right){x}^{2}+\left(-15a^{3}+23a^{2}+53a-58\right){x}+21a^{3}-34a^{2}-85a+90\)
sage: E = EllipticCurve([K([2,-3,-1,1]),K([-2,0,1,0]),K([-2,-1,1,0]),K([-58,53,23,-15]),K([90,-85,-34,21])])
 
gp: E = ellinit([Polrev([2,-3,-1,1]),Polrev([-2,0,1,0]),Polrev([-2,-1,1,0]),Polrev([-58,53,23,-15]),Polrev([90,-85,-34,21])], K);
 
magma: E := EllipticCurve([K![2,-3,-1,1],K![-2,0,1,0],K![-2,-1,1,0],K![-58,53,23,-15],K![90,-85,-34,21]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^2+8)\) = \((-a)^{6}\cdot(a^3-a^2-4a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 512 \) = \(2^{6}\cdot8\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-62a^3-86a^2+140a+352)\) = \((-a)^{30}\cdot(a^3-a^2-4a+1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -8589934592 \) = \(-2^{30}\cdot8\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{14270157697541427}{4096} a^{3} + \frac{35796422109839569}{4096} a^{2} + \frac{1541200524057185}{2048} a - \frac{18919901006348423}{4096} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{2} : -4 a^{3} + a^{2} + 11 a - 4 : 1\right)$
Height \(0.34438803798673382856260663694771192546\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{5}{4} a^{3} - 2 a^{2} - 4 a + 6 : -\frac{13}{4} a^{3} + \frac{17}{4} a^{2} + \frac{81}{8} a - \frac{31}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.34438803798673382856260663694771192546 \)
Period: \( 138.45959113046384611660493512357507602 \)
Tamagawa product: \( 4 \)  =  \(2^{2}\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 3.61945477478369 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(2\) \(4\) \(I_{20}^{*}\) Additive \(1\) \(6\) \(30\) \(12\)
\((a^3-a^2-4a+1)\) \(8\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 512.3-n consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.