Properties

Label 4.4.2777.1-512.3-g1
Base field 4.4.2777.1
Conductor norm \( 512 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.2777.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 1, -4, -1, 1]))
 
gp: K = nfinit(Polrev([2, 1, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 1, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-2\right){x}{y}+a{y}={x}^{3}+\left(-a^{3}+2a^{2}+3a-4\right){x}^{2}+\left(-a^{3}-7a^{2}-4a+8\right){x}-10a^{3}-10a^{2}+10a+3\)
sage: E = EllipticCurve([K([-2,-1,1,0]),K([-4,3,2,-1]),K([0,1,0,0]),K([8,-4,-7,-1]),K([3,10,-10,-10])])
 
gp: E = ellinit([Polrev([-2,-1,1,0]),Polrev([-4,3,2,-1]),Polrev([0,1,0,0]),Polrev([8,-4,-7,-1]),Polrev([3,10,-10,-10])], K);
 
magma: E := EllipticCurve([K![-2,-1,1,0],K![-4,3,2,-1],K![0,1,0,0],K![8,-4,-7,-1],K![3,10,-10,-10]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^2+8)\) = \((-a)^{6}\cdot(a^3-a^2-4a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 512 \) = \(2^{6}\cdot8\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-68a^3+80a^2+340a-24)\) = \((-a)^{25}\cdot(a^3-a^2-4a+1)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -2147483648 \) = \(-2^{25}\cdot8^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{620979}{128} a^{3} - \frac{68657}{128} a^{2} - \frac{1152721}{64} a - \frac{1119033}{128} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a^{2} + 2 : 1 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 84.903565503683351372577968113135216513 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 1.61115746860280 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(2\) \(2\) \(I_{15}^{*}\) Additive \(1\) \(6\) \(25\) \(7\)
\((a^3-a^2-4a+1)\) \(8\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(7\) 7B.6.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 7 and 14.
Its isogeny class 512.3-g consists of curves linked by isogenies of degrees dividing 14.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.