Properties

Label 4.4.2777.1-22.1-b6
Base field 4.4.2777.1
Conductor norm \( 22 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.2777.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 1, -4, -1, 1]))
 
gp: K = nfinit(Polrev([2, 1, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 1, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-3a-1\right){x}{y}+\left(a^{2}-a-1\right){y}={x}^{3}+\left(a^{2}-2a-3\right){x}^{2}+\left(-833a^{3}-1088a^{2}+652a+590\right){x}-39688a^{3}-53892a^{2}+31054a+33219\)
sage: E = EllipticCurve([K([-1,-3,0,1]),K([-3,-2,1,0]),K([-1,-1,1,0]),K([590,652,-1088,-833]),K([33219,31054,-53892,-39688])])
 
gp: E = ellinit([Polrev([-1,-3,0,1]),Polrev([-3,-2,1,0]),Polrev([-1,-1,1,0]),Polrev([590,652,-1088,-833]),Polrev([33219,31054,-53892,-39688])], K);
 
magma: E := EllipticCurve([K![-1,-3,0,1],K![-3,-2,1,0],K![-1,-1,1,0],K![590,652,-1088,-833],K![33219,31054,-53892,-39688]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+3a)\) = \((-a)\cdot(-a^3+2a^2+2a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 22 \) = \(2\cdot11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-285a^3+513a^2+761a-310)\) = \((-a)^{2}\cdot(-a^3+2a^2+2a-1)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 103749698404 \) = \(2^{2}\cdot11^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{64272348420343413978591}{103749698404} a^{3} + \frac{156108841633210925549601}{103749698404} a^{2} + \frac{11245678214829850896543}{51874849202} a - \frac{76993471097806369350591}{103749698404} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-12 a^{2} - 9 a + 11 : 11 a^{3} + 16 a^{2} - 10 a - 15 : 1\right)$ $\left(\frac{27}{4} a^{3} + \frac{55}{4} a^{2} - \frac{11}{2} a - \frac{53}{4} : -\frac{143}{8} a^{3} - \frac{227}{8} a^{2} + \frac{37}{4} a + \frac{125}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 2.7166316751885510155072509870979979115 \)
Tamagawa product: \( 20 \)  =  \(2\cdot( 2 \cdot 5 )\)
Torsion order: \(4\)
Leading coefficient: \( 1.61098999014251 \)
Analytic order of Ш: \( 25 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(2\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\((-a^3+2a^2+2a-1)\) \(11\) \(10\) \(I_{10}\) Split multiplicative \(-1\) \(1\) \(10\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 22.1-b consists of curves linked by isogenies of degrees dividing 20.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.