Properties

Label 4.4.2777.1-22.1-a10
Base field 4.4.2777.1
Conductor norm \( 22 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.2777.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 1, -4, -1, 1]))
 
gp: K = nfinit(Polrev([2, 1, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 1, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a^{2}-a-1\right){y}={x}^{3}+\left(-a^{3}+5a+2\right){x}^{2}+\left(-115a^{3}+187a^{2}+362a-350\right){x}+926a^{3}-1541a^{2}-2691a+2732\)
sage: E = EllipticCurve([K([1,1,0,0]),K([2,5,0,-1]),K([-1,-1,1,0]),K([-350,362,187,-115]),K([2732,-2691,-1541,926])])
 
gp: E = ellinit([Polrev([1,1,0,0]),Polrev([2,5,0,-1]),Polrev([-1,-1,1,0]),Polrev([-350,362,187,-115]),Polrev([2732,-2691,-1541,926])], K);
 
magma: E := EllipticCurve([K![1,1,0,0],K![2,5,0,-1],K![-1,-1,1,0],K![-350,362,187,-115],K![2732,-2691,-1541,926]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+3a)\) = \((-a)\cdot(-a^3+2a^2+2a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 22 \) = \(2\cdot11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-77179a^3+5149430a^2-15649512a+53984)\) = \((-a)^{12}\cdot(-a^3+2a^2+2a-1)^{24}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 40344505040107975043939700736 \) = \(2^{12}\cdot11^{24}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{60659117288902836130412254108283}{40344505040107975043939700736} a^{3} - \frac{86300110386401779908460150637033}{40344505040107975043939700736} a^{2} - \frac{97109108201994369690495482301689}{20172252520053987521969850368} a + \frac{184521640869151181066006363788207}{40344505040107975043939700736} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(3 a^{3} - \frac{17}{4} a^{2} - \frac{23}{2} a + \frac{47}{4} : -\frac{7}{8} a^{3} + \frac{11}{8} a^{2} + \frac{15}{8} a - \frac{19}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 4.9279349520765874345145353311295468223 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 0.841626760920221 \)
Analytic order of Ш: \( 9 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(2\) \(2\) \(I_{12}\) Non-split multiplicative \(1\) \(1\) \(12\) \(12\)
\((-a^3+2a^2+2a-1)\) \(11\) \(2\) \(I_{24}\) Non-split multiplicative \(1\) \(1\) \(24\) \(24\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6, 8, 12 and 24.
Its isogeny class 22.1-a consists of curves linked by isogenies of degrees dividing 24.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.