Properties

Label 4.4.2777.1-16.1-b3
Base field 4.4.2777.1
Conductor norm \( 16 \)
CM no
Base change no
Q-curve no
Torsion order \( 14 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.2777.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 1, -4, -1, 1]))
 
gp: K = nfinit(Polrev([2, 1, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 1, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-a^{2}-3a+1\right){x}{y}+\left(a^{3}-a^{2}-3a+1\right){y}={x}^{3}+\left(-a^{3}+a^{2}+2a-1\right){x}^{2}+\left(3a^{3}-3a^{2}-10a+3\right){x}-a^{3}+a^{2}+3a-1\)
sage: E = EllipticCurve([K([1,-3,-1,1]),K([-1,2,1,-1]),K([1,-3,-1,1]),K([3,-10,-3,3]),K([-1,3,1,-1])])
 
gp: E = ellinit([Polrev([1,-3,-1,1]),Polrev([-1,2,1,-1]),Polrev([1,-3,-1,1]),Polrev([3,-10,-3,3]),Polrev([-1,3,1,-1])], K);
 
magma: E := EllipticCurve([K![1,-3,-1,1],K![-1,2,1,-1],K![1,-3,-1,1],K![3,-10,-3,3],K![-1,3,1,-1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2)\) = \((-a)\cdot(a^3-a^2-4a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(2\cdot8\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((4a^2-16)\) = \((-a)^{7}\cdot(a^3-a^2-4a+1)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -8192 \) = \(-2^{7}\cdot8^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{620979}{128} a^{3} - \frac{68657}{128} a^{2} - \frac{1152721}{64} a - \frac{1119033}{128} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/14\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(12 a^{3} - 20 a^{2} - 34 a + 35 : -94 a^{3} + 157 a^{2} + 269 a - 274 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1106.2213455686161212738737588233869719 \)
Tamagawa product: \( 14 \)  =  \(7\cdot2\)
Torsion order: \(14\)
Leading coefficient: \( 1.49942952695583 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(2\) \(7\) \(I_{7}\) Split multiplicative \(-1\) \(1\) \(7\) \(7\)
\((a^3-a^2-4a+1)\) \(8\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(7\) 7B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 7 and 14.
Its isogeny class 16.1-b consists of curves linked by isogenies of degrees dividing 14.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.