Properties

Label 4.4.2777.1-128.2-a2
Base field 4.4.2777.1
Conductor norm \( 128 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.2777.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 1, -4, -1, 1]))
 
gp: K = nfinit(Polrev([2, 1, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 1, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-4a\right){x}{y}+\left(a^{2}-2\right){y}={x}^{3}+\left(a^{2}-a-1\right){x}^{2}+\left(150a^{3}+238a^{2}-894a-1988\right){x}+13305a^{3}-7194a^{2}-50412a-8997\)
sage: E = EllipticCurve([K([0,-4,0,1]),K([-1,-1,1,0]),K([-2,0,1,0]),K([-1988,-894,238,150]),K([-8997,-50412,-7194,13305])])
 
gp: E = ellinit([Polrev([0,-4,0,1]),Polrev([-1,-1,1,0]),Polrev([-2,0,1,0]),Polrev([-1988,-894,238,150]),Polrev([-8997,-50412,-7194,13305])], K);
 
magma: E := EllipticCurve([K![0,-4,0,1],K![-1,-1,1,0],K![-2,0,1,0],K![-1988,-894,238,150],K![-8997,-50412,-7194,13305]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^3+2a^2+4a)\) = \((-a)^{4}\cdot(a^3-a^2-4a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 128 \) = \(2^{4}\cdot8\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-128a^3+128a+256)\) = \((-a)^{14}\cdot(a^3-a^2-4a+1)^{7}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -34359738368 \) = \(-2^{14}\cdot8^{7}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{414403249587808247093}{128} a^{3} - \frac{696044271483193936579}{128} a^{2} - \frac{592282302218182028565}{64} a + \frac{76217710069831417535}{8} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{1872}{121} a^{3} - \frac{19}{121} a^{2} + \frac{8108}{121} a + \frac{7406}{121} : \frac{195244}{1331} a^{3} - \frac{32001}{1331} a^{2} - \frac{815779}{1331} a - \frac{510061}{1331} : 1\right)$
Height \(0.76769898660842937291335720198839658289\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(7 a^{3} - \frac{33}{4} a^{2} - \frac{141}{4} a + \frac{5}{2} : \frac{13}{2} a^{3} + \frac{67}{8} a^{2} - \frac{29}{2} a - \frac{71}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.76769898660842937291335720198839658289 \)
Period: \( 41.628049501595625370227999331574289575 \)
Tamagawa product: \( 4 \)  =  \(2^{2}\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 2.42576698582775 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(2\) \(4\) \(I_{6}^{*}\) Additive \(-1\) \(4\) \(14\) \(2\)
\((a^3-a^2-4a+1)\) \(8\) \(1\) \(I_{7}\) Non-split multiplicative \(1\) \(1\) \(7\) \(7\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(7\) 7B.6.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 7 and 14.
Its isogeny class 128.2-a consists of curves linked by isogenies of degrees dividing 14.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.