Properties

Label 4.4.2777.1-121.1-a2
Base field 4.4.2777.1
Conductor norm \( 121 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.2777.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 1, -4, -1, 1]))
 
gp: K = nfinit(Polrev([2, 1, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 1, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-4a-1\right){x}{y}+\left(a^{3}-a^{2}-2a+1\right){y}={x}^{3}+\left(-a^{3}+5a+1\right){x}^{2}+\left(40a^{3}-227a^{2}+21a+133\right){x}-475a^{3}+2195a^{2}-35a-1188\)
sage: E = EllipticCurve([K([-1,-4,0,1]),K([1,5,0,-1]),K([1,-2,-1,1]),K([133,21,-227,40]),K([-1188,-35,2195,-475])])
 
gp: E = ellinit([Polrev([-1,-4,0,1]),Polrev([1,5,0,-1]),Polrev([1,-2,-1,1]),Polrev([133,21,-227,40]),Polrev([-1188,-35,2195,-475])], K);
 
magma: E := EllipticCurve([K![-1,-4,0,1],K![1,5,0,-1],K![1,-2,-1,1],K![133,21,-227,40],K![-1188,-35,2195,-475]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^3-2a^2-5a+1)\) = \((-a^3+2a^2+2a-1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 121 \) = \(11^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((24a^3-11a^2-32a-35)\) = \((-a^3+2a^2+2a-1)^{7}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -19487171 \) = \(-11^{7}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1702129469435805324}{11} a^{3} + \frac{2318878776895144329}{11} a^{2} - \frac{1330538175521684262}{11} a - \frac{1441053861737062367}{11} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{3} + 7 a^{2} - 5 a - 1 : -7 a^{3} + 16 a^{2} - 5 a - 5 : 1\right)$
Height \(0.24250409032152790432344373573380299384\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{1}{2} a^{3} + \frac{23}{4} a^{2} - \frac{13}{4} a - \frac{19}{4} : \frac{11}{8} a^{3} - 5 a^{2} - \frac{31}{8} a - \frac{7}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.24250409032152790432344373573380299384 \)
Period: \( 185.16812685439735242484715195414139923 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.70422666963676 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+2a^2+2a-1)\) \(11\) \(2\) \(I_{1}^{*}\) Additive \(-1\) \(2\) \(7\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 121.1-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.