Properties

Label 4.4.2624.1-49.4-a1
Base field 4.4.2624.1
Conductor norm \( 49 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.2624.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 3 x^{2} + 2 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 2, -3, -2, 1]))
 
gp: K = nfinit(Polrev([1, 2, -3, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 2, -3, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-a^{2}-3a\right){x}{y}+a{y}={x}^{3}+\left(a^{3}-a^{2}-4a+1\right){x}^{2}+\left(38a^{3}-41a^{2}-159a-66\right){x}-241a^{3}+276a^{2}+974a+319\)
sage: E = EllipticCurve([K([0,-3,-1,1]),K([1,-4,-1,1]),K([0,1,0,0]),K([-66,-159,-41,38]),K([319,974,276,-241])])
 
gp: E = ellinit([Polrev([0,-3,-1,1]),Polrev([1,-4,-1,1]),Polrev([0,1,0,0]),Polrev([-66,-159,-41,38]),Polrev([319,974,276,-241])], K);
 
magma: E := EllipticCurve([K![0,-3,-1,1],K![1,-4,-1,1],K![0,1,0,0],K![-66,-159,-41,38],K![319,974,276,-241]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-a^2-4a+1)\) = \((-a^3+3a^2+a-3)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 49 \) = \(7^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((4a^3-14a^2-9a+31)\) = \((-a^3+3a^2+a-3)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 117649 \) = \(7^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 3292211757861632 a^{3} - 7770967386451264 a^{2} - 7075906078720256 a + 9134646147509504 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{3} - a^{2} - 5 a : -9 a^{3} + 12 a^{2} + 32 a + 9 : 1\right)$
Height \(0.11509089569110000142749127678736681871\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-2 a^{3} + \frac{3}{2} a^{2} + 6 a + \frac{7}{2} : -\frac{5}{4} a^{3} + 4 a^{2} + 8 a + \frac{7}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.11509089569110000142749127678736681871 \)
Period: \( 312.55080983089286734198401157859468437 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.40446098336357 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+3a^2+a-3)\) \(7\) \(2\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 49.4-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.