Properties

Label 4.4.2624.1-49.2-b2
Base field 4.4.2624.1
Conductor norm \( 49 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.2624.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 3 x^{2} + 2 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 2, -3, -2, 1]))
 
gp: K = nfinit(Polrev([1, 2, -3, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 2, -3, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-a^{2}-4a+1\right){x}{y}+\left(a^{3}-a^{2}-3a\right){y}={x}^{3}+\left(a^{3}-3a^{2}+a+1\right){x}^{2}+\left(50a^{3}-72a^{2}-205a-58\right){x}+314a^{3}-425a^{2}-1331a-414\)
sage: E = EllipticCurve([K([1,-4,-1,1]),K([1,1,-3,1]),K([0,-3,-1,1]),K([-58,-205,-72,50]),K([-414,-1331,-425,314])])
 
gp: E = ellinit([Polrev([1,-4,-1,1]),Polrev([1,1,-3,1]),Polrev([0,-3,-1,1]),Polrev([-58,-205,-72,50]),Polrev([-414,-1331,-425,314])], K);
 
magma: E := EllipticCurve([K![1,-4,-1,1],K![1,1,-3,1],K![0,-3,-1,1],K![-58,-205,-72,50],K![-414,-1331,-425,314]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^3-4a^2-4a+3)\) = \((2a^3-4a^2-4a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 49 \) = \(49\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-2a^3+4a^2+4a-3)\) = \((2a^3-4a^2-4a+3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 49 \) = \(49\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{2220003697148358852}{7} a^{3} + \frac{7166898260661020127}{7} a^{2} - \frac{2143289518391363318}{7} a - 258190746641008395 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{1}{49} a^{3} + \frac{46}{7} a^{2} - \frac{578}{49} a - \frac{213}{49} : -\frac{2832}{343} a^{3} + \frac{1017}{49} a^{2} - \frac{4069}{343} a - \frac{3358}{343} : 1\right)$
Height \(2.2247839230664694882723028092129402093\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-3 a^{3} + 4 a^{2} + 14 a + 5 : -6 a^{3} + 6 a^{2} + 20 a + 5 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 2.2247839230664694882723028092129402093 \)
Period: \( 4.1955585659374044447679625985728499076 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 1.63997874508118 \)
Analytic order of Ш: \( 9 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2a^3-4a^2-4a+3)\) \(49\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 49.2-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.