Properties

Label 4.4.2624.1-28.1-a1
Base field 4.4.2624.1
Conductor norm \( 28 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.2624.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 3 x^{2} + 2 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 2, -3, -2, 1]))
 
gp: K = nfinit(Polrev([1, 2, -3, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 2, -3, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-2a^{2}-2a+2\right){x}{y}+\left(a^{2}-a\right){y}={x}^{3}+\left(-a^{3}+a^{2}+4a+1\right){x}^{2}+\left(-a^{3}+4a+4\right){x}-a^{3}+5a\)
sage: E = EllipticCurve([K([2,-2,-2,1]),K([1,4,1,-1]),K([0,-1,1,0]),K([4,4,0,-1]),K([0,5,0,-1])])
 
gp: E = ellinit([Polrev([2,-2,-2,1]),Polrev([1,4,1,-1]),Polrev([0,-1,1,0]),Polrev([4,4,0,-1]),Polrev([0,5,0,-1])], K);
 
magma: E := EllipticCurve([K![2,-2,-2,1],K![1,4,1,-1],K![0,-1,1,0],K![4,4,0,-1],K![0,5,0,-1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+2a^2+4a-3)\) = \((a^3-2a^2-2a+1)\cdot(-a^3+3a^2+a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 28 \) = \(4\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-215a^3+394a^2+594a-531)\) = \((a^3-2a^2-2a+1)\cdot(-a^3+3a^2+a-3)^{11}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 7909306972 \) = \(4\cdot7^{11}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{431515410343}{1977326743} a^{3} + \frac{343844253719}{3954653486} a^{2} + \frac{638287309115}{564950498} a + \frac{3374235138465}{3954653486} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 56.829723009001762488330223591283630932 \)
Tamagawa product: \( 1 \)  =  \(1\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 1.10941395367541 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-2a^2-2a+1)\) \(4\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((-a^3+3a^2+a-3)\) \(7\) \(1\) \(I_{11}\) Non-split multiplicative \(1\) \(1\) \(11\) \(11\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 28.1-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.