Properties

Label 4.4.2624.1-256.1-j3
Base field 4.4.2624.1
Conductor norm \( 256 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.2624.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 3 x^{2} + 2 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 2, -3, -2, 1]))
 
gp: K = nfinit(Polrev([1, 2, -3, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 2, -3, -2, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+\left(-a^{3}+2a^{2}+2a\right){x}^{2}+\left(102a^{3}-139a^{2}-356a-126\right){x}-599a^{3}+482a^{2}+2913a+998\)
sage: E = EllipticCurve([K([0,0,0,0]),K([0,2,2,-1]),K([0,0,0,0]),K([-126,-356,-139,102]),K([998,2913,482,-599])])
 
gp: E = ellinit([Polrev([0,0,0,0]),Polrev([0,2,2,-1]),Polrev([0,0,0,0]),Polrev([-126,-356,-139,102]),Polrev([998,2913,482,-599])], K);
 
magma: E := EllipticCurve([K![0,0,0,0],K![0,2,2,-1],K![0,0,0,0],K![-126,-356,-139,102],K![998,2913,482,-599]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((4)\) = \((a^3-2a^2-2a+1)^{4}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 256 \) = \(4^{4}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-64)\) = \((a^3-2a^2-2a+1)^{12}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 16777216 \) = \(4^{12}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 3292211757861632 a^{3} - 7770967386451264 a^{2} - 7075906078720256 a + 9134646147509504 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-3 a^{3} + 6 a^{2} + 6 a + 4 : 0 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 35.209121595108378031638515265896761539 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 1.54652089845978 \)
Analytic order of Ш: \( 9 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-2a^2-2a+1)\) \(4\) \(1\) \(II^{*}\) Additive \(1\) \(4\) \(12\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 256.1-j consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.