Properties

Label 4.4.2624.1-25.2-a1
Base field 4.4.2624.1
Conductor norm \( 25 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.2624.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 3 x^{2} + 2 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 2, -3, -2, 1]))
 
gp: K = nfinit(Polrev([1, 2, -3, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 2, -3, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-2a^{2}-a+1\right){x}{y}+\left(a^{3}-2a^{2}-a+1\right){y}={x}^{3}+\left(a^{3}-3a^{2}+a+1\right){x}^{2}+\left(-2a^{3}+6a^{2}+2a-5\right){x}+2a^{3}-5a^{2}-a+3\)
sage: E = EllipticCurve([K([1,-1,-2,1]),K([1,1,-3,1]),K([1,-1,-2,1]),K([-5,2,6,-2]),K([3,-1,-5,2])])
 
gp: E = ellinit([Polrev([1,-1,-2,1]),Polrev([1,1,-3,1]),Polrev([1,-1,-2,1]),Polrev([-5,2,6,-2]),Polrev([3,-1,-5,2])], K);
 
magma: E := EllipticCurve([K![1,-1,-2,1],K![1,1,-3,1],K![1,-1,-2,1],K![-5,2,6,-2],K![3,-1,-5,2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-a^2-3a+1)\) = \((a^3-a^2-3a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 25 \) = \(25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-38a^3+79a^2+66a-40)\) = \((a^3-a^2-3a+1)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 9765625 \) = \(25^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{33914163}{3125} a^{3} + \frac{86534812}{3125} a^{2} + \frac{62225714}{3125} a - \frac{23022392}{625} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{3} + a^{2} + 3 a + 2 : -3 a^{3} + 5 a^{2} + 10 a + 2 : 1\right)$
Height \(0.0032006178572261560013634276145926737861\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0032006178572261560013634276145926737861 \)
Period: \( 896.14501299225505902963217688179714023 \)
Tamagawa product: \( 5 \)
Torsion order: \(1\)
Leading coefficient: \( 1.11985088251119 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-a^2-3a+1)\) \(25\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 25.2-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.