Properties

Label 4.4.2304.1-9.1-b5
Base field \(\Q(\sqrt{2}, \sqrt{3})\)
Conductor norm \( 9 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{2}, \sqrt{3})\)

Generator \(a\), with minimal polynomial \( x^{4} - 4 x^{2} + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, -4, 0, 1]))
 
gp: K = nfinit(Polrev([1, 0, -4, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -4, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-3a\right){x}{y}+\left(a^{3}-3a+1\right){y}={x}^{3}+\left(a^{3}-3a\right){x}^{2}+\left(-162a^{3}+486a-243\right){x}-1495a^{3}+4485a-2130\)
sage: E = EllipticCurve([K([0,-3,0,1]),K([0,-3,0,1]),K([1,-3,0,1]),K([-243,486,0,-162]),K([-2130,4485,0,-1495])])
 
gp: E = ellinit([Polrev([0,-3,0,1]),Polrev([0,-3,0,1]),Polrev([1,-3,0,1]),Polrev([-243,486,0,-162]),Polrev([-2130,4485,0,-1495])], K);
 
magma: E := EllipticCurve([K![0,-3,0,1],K![0,-3,0,1],K![1,-3,0,1],K![-243,486,0,-162],K![-2130,4485,0,-1495]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-2)\) = \((a^2-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((243)\) = \((a^2-2)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 3486784401 \) = \(9^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{58591911104}{243} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(6 a^{3} - \frac{9}{2} a^{2} - 27 a + \frac{25}{2} : -\frac{9}{2} a^{3} + \frac{9}{2} a^{2} + 18 a - 11 : 1\right)$ $\left(-3 a^{3} + \frac{9}{2} a^{2} + 18 a - \frac{11}{2} : -\frac{9}{2} a^{2} - \frac{9}{2} a + 7 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 6.4203790231163829729727767338864631532 \)
Tamagawa product: \( 2 \)
Torsion order: \(4\)
Leading coefficient: \( 0.417993425984140 \)
Analytic order of Ш: \( 25 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-2)\) \(9\) \(2\) \(I_{10}\) Non-split multiplicative \(1\) \(1\) \(10\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 9.1-b consists of curves linked by isogenies of degrees dividing 20.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q(\sqrt{2}) \) 2.2.8.1-9.1-a4
\(\Q(\sqrt{2}) \) 2.2.8.1-1296.1-c4