Properties

Label 4.4.2304.1-72.1-a7
Base field \(\Q(\sqrt{2}, \sqrt{3})\)
Conductor norm \( 72 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 16 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{2}, \sqrt{3})\)

Generator \(a\), with minimal polynomial \( x^{4} - 4 x^{2} + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, -4, 0, 1]))
 
gp: K = nfinit(Polrev([1, 0, -4, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -4, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}+a^{2}-4a-2\right){x}{y}+\left(a^{2}+a-2\right){y}={x}^{3}+\left(a^{3}-a^{2}-3a+3\right){x}^{2}+\left(-96a^{3}-242a^{2}-97a+6\right){x}+2001a^{3}+4017a^{2}-190a-897\)
sage: E = EllipticCurve([K([-2,-4,1,1]),K([3,-3,-1,1]),K([-2,1,1,0]),K([6,-97,-242,-96]),K([-897,-190,4017,2001])])
 
gp: E = ellinit([Polrev([-2,-4,1,1]),Polrev([3,-3,-1,1]),Polrev([-2,1,1,0]),Polrev([6,-97,-242,-96]),Polrev([-897,-190,4017,2001])], K);
 
magma: E := EllipticCurve([K![-2,-4,1,1],K![3,-3,-1,1],K![-2,1,1,0],K![6,-97,-242,-96],K![-897,-190,4017,2001]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+a^2+5a-5)\) = \((a^3-4a+1)^{3}\cdot(a^2-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 72 \) = \(2^{3}\cdot9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((36)\) = \((a^3-4a+1)^{8}\cdot(a^2-2)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1679616 \) = \(2^{8}\cdot9^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{3065617154}{9} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/8\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(6 a^{3} + 5 a^{2} - 15 a - 9 : 6 a^{3} + 2 a^{2} - 28 a - 13 : 1\right)$ $\left(3 a^{2} + 6 a + 1 : -4 a^{3} - 3 a^{2} + 10 a + 6 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1033.6726101924187563959078007327281429 \)
Tamagawa product: \( 16 \)  =  \(2^{2}\cdot2^{2}\)
Torsion order: \(16\)
Leading coefficient: \( 1.34592787785471 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-4a+1)\) \(2\) \(4\) \(I_{1}^{*}\) Additive \(-1\) \(3\) \(8\) \(0\)
\((a^2-2)\) \(9\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 8 and 16.
Its isogeny class 72.1-a consists of curves linked by isogenies of degrees dividing 32.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 10 elliptic curves:

Base field Curve
\(\Q\) 48.a1
\(\Q\) 72.a1
\(\Q\) 192.b1
\(\Q\) 576.d1
\(\Q(\sqrt{3}) \) 2.2.12.1-24.1-b7
\(\Q(\sqrt{3}) \) 2.2.12.1-768.1-e7
\(\Q(\sqrt{6}) \) 2.2.24.1-48.1-b6
\(\Q(\sqrt{6}) \) 2.2.24.1-24.1-a6
\(\Q(\sqrt{2}) \) 2.2.8.1-144.1-b7
\(\Q(\sqrt{2}) \) 2.2.8.1-648.1-a7