Properties

Label 4.4.2304.1-47.2-b1
Base field \(\Q(\sqrt{2}, \sqrt{3})\)
Conductor norm \( 47 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{2}, \sqrt{3})\)

Generator \(a\), with minimal polynomial \( x^{4} - 4 x^{2} + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, -4, 0, 1]))
 
gp: K = nfinit(Polrev([1, 0, -4, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -4, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}+a^{2}-4a-2\right){x}{y}+\left(a^{3}-3a+1\right){y}={x}^{3}+\left(a^{3}+a^{2}-4a-1\right){x}^{2}+\left(4a^{3}-19a-9\right){x}+11a^{3}+4a^{2}-33a-18\)
sage: E = EllipticCurve([K([-2,-4,1,1]),K([-1,-4,1,1]),K([1,-3,0,1]),K([-9,-19,0,4]),K([-18,-33,4,11])])
 
gp: E = ellinit([Polrev([-2,-4,1,1]),Polrev([-1,-4,1,1]),Polrev([1,-3,0,1]),Polrev([-9,-19,0,4]),Polrev([-18,-33,4,11])], K);
 
magma: E := EllipticCurve([K![-2,-4,1,1],K![-1,-4,1,1],K![1,-3,0,1],K![-9,-19,0,4],K![-18,-33,4,11]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3+2a^2-2)\) = \((a^3+2a^2-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 47 \) = \(47\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^3+a^2-5a-4)\) = \((a^3+2a^2-2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -47 \) = \(-47\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{76092676472}{47} a^{3} + \frac{147059917488}{47} a^{2} - \frac{20384319416}{47} a - \frac{39402167512}{47} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(2 a^{2} - 2 a - 2 : 4 a^{3} - 6 a^{2} - 4 a - 1 : 1\right)$
Height \(0.085869761963972778227827393368850946224\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a^{3} + \frac{1}{4} a^{2} - \frac{5}{2} a - \frac{7}{4} : \frac{5}{8} a^{3} + \frac{9}{8} a^{2} - \frac{31}{8} a - \frac{27}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.085869761963972778227827393368850946224 \)
Period: \( 505.35198929455899636873265538693592881 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 0.904051146432165 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3+2a^2-2)\) \(47\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 47.2-b consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.