Properties

Label 4.4.2304.1-1.1-a5
Base field \(\Q(\sqrt{2}, \sqrt{3})\)
Conductor norm \( 1 \)
CM yes (\(-288\))
Base change no
Q-curve yes
Torsion order \( 6 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{2}, \sqrt{3})\)

Generator \(a\), with minimal polynomial \( x^{4} - 4 x^{2} + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, -4, 0, 1]))
 
gp: K = nfinit(Polrev([1, 0, -4, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -4, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}+a-2\right){x}{y}+\left(a^{2}-2\right){y}={x}^{3}+\left(a^{3}-a^{2}-3a+3\right){x}^{2}+\left(-14a^{3}-2a^{2}+63a-31\right){x}+11a^{3}+15a^{2}-104a+48\)
sage: E = EllipticCurve([K([-2,1,1,0]),K([3,-3,-1,1]),K([-2,0,1,0]),K([-31,63,-2,-14]),K([48,-104,15,11])])
 
gp: E = ellinit([Polrev([-2,1,1,0]),Polrev([3,-3,-1,1]),Polrev([-2,0,1,0]),Polrev([-31,63,-2,-14]),Polrev([48,-104,15,11])], K);
 
magma: E := EllipticCurve([K![-2,1,1,0],K![3,-3,-1,1],K![-2,0,1,0],K![-31,63,-2,-14],K![48,-104,15,11]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1)\) = \((1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 1 \) = 1
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1)\) = \((1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1 \) = 1
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 39772938666710642939000 a^{3} - 20587988013278347844000 a^{2} - 148434627870484880561000 a + 76835417291173823381000 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z[\sqrt{-72}]\) (potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $N(\mathrm{U}(1))$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-2 a + 2 : -a^{2} - a + 4 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 644.14307357065682539122806084724156930 \)
Tamagawa product: \( 1 \)
Torsion order: \(6\)
Leading coefficient: \( 0.372767982390426 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
No primes of bad reduction.

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1

For all other primes \(p\), the image is a Borel subgroup if \(p=2\), the normalizer of a split Cartan subgroup if \(\left(\frac{ -2 }{p}\right)=+1\) or the normalizer of a nonsplit Cartan subgroup if \(\left(\frac{ -2 }{p}\right)=-1\).

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6, 8, 9, 12, 18, 24, 36 and 72.
Its isogeny class 1.1-a consists of curves linked by isogenies of degrees dividing 72.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.