Properties

Label 4.4.2225.1-19.2-a3
Base field 4.4.2225.1
Conductor norm \( 19 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.2225.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 5 x^{2} + 2 x + 4 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([4, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([4, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{3}{2}a\right){x}{y}+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-\frac{3}{2}a-2\right){y}={x}^{3}+\left(a^{2}-a-2\right){x}^{2}+\left(22a^{3}-120a-88\right){x}-63a^{3}-25a^{2}+263a+199\)
sage: E = EllipticCurve([K([0,-3/2,-1/2,1/2]),K([-2,-1,1,0]),K([-2,-3/2,1/2,1/2]),K([-88,-120,0,22]),K([199,263,-25,-63])])
 
gp: E = ellinit([Polrev([0,-3/2,-1/2,1/2]),Polrev([-2,-1,1,0]),Polrev([-2,-3/2,1/2,1/2]),Polrev([-88,-120,0,22]),Polrev([199,263,-25,-63])], K);
 
magma: E := EllipticCurve([K![0,-3/2,-1/2,1/2],K![-2,-1,1,0],K![-2,-3/2,1/2,1/2],K![-88,-120,0,22],K![199,263,-25,-63]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1/2a^3-1/2a^2-1/2a+2)\) = \((1/2a^3-1/2a^2-1/2a+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 19 \) = \(19\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((65a^3+65a^2-219a-543)\) = \((1/2a^3-1/2a^2-1/2a+2)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -16983563041 \) = \(-19^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{443120658437800819}{33967126082} a^{3} - \frac{762060865852968133}{33967126082} a^{2} - \frac{1526454471320698141}{33967126082} a + \frac{1035943318006055399}{16983563041} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{15}{8} a^{3} - \frac{9}{8} a^{2} + \frac{69}{8} a + \frac{31}{4} : -\frac{13}{8} a^{3} - \frac{3}{8} a^{2} + \frac{63}{8} a + \frac{47}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 108.71373016166952822407304284529613739 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.15236323498953 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/2a^3-1/2a^2-1/2a+2)\) \(19\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 19.2-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.