Properties

Label 4.4.2225.1-16.1-a6
Base field 4.4.2225.1
Conductor norm \( 16 \)
CM no
Base change no
Q-curve no
Torsion order \( 6 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.2225.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 5 x^{2} + 2 x + 4 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([4, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([4, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-\frac{5}{2}a-2\right){x}{y}+\left(\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{3}{2}a\right){y}={x}^{3}+\left(\frac{1}{2}a^{3}-\frac{3}{2}a^{2}-\frac{1}{2}a+2\right){x}^{2}+\left(-10a^{3}+21a^{2}+37a-63\right){x}-\frac{33}{2}a^{3}+\frac{69}{2}a^{2}+\frac{111}{2}a-104\)
sage: E = EllipticCurve([K([-2,-5/2,1/2,1/2]),K([2,-1/2,-3/2,1/2]),K([0,-3/2,-1/2,1/2]),K([-63,37,21,-10]),K([-104,111/2,69/2,-33/2])])
 
gp: E = ellinit([Polrev([-2,-5/2,1/2,1/2]),Polrev([2,-1/2,-3/2,1/2]),Polrev([0,-3/2,-1/2,1/2]),Polrev([-63,37,21,-10]),Polrev([-104,111/2,69/2,-33/2])], K);
 
magma: E := EllipticCurve([K![-2,-5/2,1/2,1/2],K![2,-1/2,-3/2,1/2],K![0,-3/2,-1/2,1/2],K![-63,37,21,-10],K![-104,111/2,69/2,-33/2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2)\) = \((-a)\cdot(-1/2a^3+1/2a^2+5/2a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(4\cdot4\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-7168a^3+7680a^2+25600a-10240)\) = \((-a)^{18}\cdot(-1/2a^3+1/2a^2+5/2a-1)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 18014398509481984 \) = \(4^{18}\cdot4^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{3114192685065}{262144} a^{3} + \frac{536617151675}{16384} a^{2} + \frac{61146381065}{32768} a - \frac{7093520331823}{262144} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-3 a^{3} + 2 a^{2} + 15 a + 3 : 7 a^{3} - 5 a^{2} - 38 a - 12 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 11.798400570364942519153557784215456690 \)
Tamagawa product: \( 162 \)  =  \(( 2 \cdot 3^{2} )\cdot3^{2}\)
Torsion order: \(6\)
Leading coefficient: \( 1.12556516328474 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(4\) \(18\) \(I_{18}\) Split multiplicative \(-1\) \(1\) \(18\) \(18\)
\((-1/2a^3+1/2a^2+5/2a-1)\) \(4\) \(9\) \(I_{9}\) Split multiplicative \(-1\) \(1\) \(9\) \(9\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3Cs.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 16.1-a consists of curves linked by isogenies of degrees dividing 18.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.