Properties

Label 4.4.2048.1-17.2-a3
Base field \(\Q(\zeta_{16})^+\)
Conductor norm \( 17 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{16})^+\)

Generator \(a\), with minimal polynomial \( x^{4} - 4 x^{2} + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, -4, 0, 1]))
 
gp: K = nfinit(Polrev([2, 0, -4, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, -4, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}+a-2\right){x}{y}+\left(a^{2}+a-1\right){y}={x}^{3}+\left(-a^{3}+a^{2}+4a-3\right){x}^{2}+\left(26a^{3}+20a^{2}-88a-68\right){x}+108a^{3}+83a^{2}-369a-283\)
sage: E = EllipticCurve([K([-2,1,1,0]),K([-3,4,1,-1]),K([-1,1,1,0]),K([-68,-88,20,26]),K([-283,-369,83,108])])
 
gp: E = ellinit([Polrev([-2,1,1,0]),Polrev([-3,4,1,-1]),Polrev([-1,1,1,0]),Polrev([-68,-88,20,26]),Polrev([-283,-369,83,108])], K);
 
magma: E := EllipticCurve([K![-2,1,1,0],K![-3,4,1,-1],K![-1,1,1,0],K![-68,-88,20,26],K![-283,-369,83,108]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3-a^2+3a+1)\) = \((-a^3-a^2+3a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 17 \) = \(17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^3+a^2-3a-1)\) = \((-a^3-a^2+3a+1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 17 \) = \(17\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{8388075833640}{17} a^{3} - \frac{6438155264624}{17} a^{2} + \frac{28638682336544}{17} a + \frac{21981236916776}{17} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{3}{2} a^{3} + \frac{3}{4} a^{2} - 5 a - \frac{7}{2} : \frac{5}{8} a^{3} - \frac{9}{4} a - \frac{3}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 76.358122468326445486158716379020951477 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 1.68729206862583 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3-a^2+3a+1)\) \(17\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 17.2-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.