Properties

Label 4.4.2048.1-1.1-a11
Base field \(\Q(\zeta_{16})^+\)
Conductor norm \( 1 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{16})^+\)

Generator \(a\), with minimal polynomial \( x^{4} - 4 x^{2} + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, -4, 0, 1]))
 
gp: K = nfinit(Polrev([2, 0, -4, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, -4, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-3a\right){x}{y}+{y}={x}^{3}+\left(-a^{3}-a^{2}+3a+2\right){x}^{2}+\left(112a^{3}+112a^{2}-420a-455\right){x}+1225a^{3}+1100a^{2}-4334a-4038\)
sage: E = EllipticCurve([K([0,-3,0,1]),K([2,3,-1,-1]),K([1,0,0,0]),K([-455,-420,112,112]),K([-4038,-4334,1100,1225])])
 
gp: E = ellinit([Polrev([0,-3,0,1]),Polrev([2,3,-1,-1]),Polrev([1,0,0,0]),Polrev([-455,-420,112,112]),Polrev([-4038,-4334,1100,1225])], K);
 
magma: E := EllipticCurve([K![0,-3,0,1],K![2,3,-1,-1],K![1,0,0,0],K![-455,-420,112,112],K![-4038,-4334,1100,1225]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1)\) = \((1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 1 \) = 1
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1)\) = \((1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1 \) = 1
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -4374624644505560827923496904 a^{3} + 8083252342956303105729121856 a^{2} + 2562595786459777953350768848 a - 4735059594419705758581752312 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-2 a^{3} - \frac{19}{4} a^{2} + 11 a + 23 : -\frac{73}{8} a^{3} - \frac{7}{2} a^{2} + \frac{119}{4} a + \frac{17}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1.6302687553063589652205890031213109992 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 0.225151189850328 \)
Analytic order of Ш: \( 25 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
No primes of bad reduction.

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 5, 8, 10, 20 and 40.
Its isogeny class 1.1-a consists of curves linked by isogenies of degrees dividing 40.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.