Properties

Label 4.4.2000.1-64.1-b5
Base field \(\Q(\zeta_{20})^+\)
Conductor norm \( 64 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{20})^+\)

Generator \(a\), with minimal polynomial \( x^{4} - 5 x^{2} + 5 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([5, 0, -5, 0, 1]))
 
gp: K = nfinit(Polrev([5, 0, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5, 0, -5, 0, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+\left(-a^{2}+3\right){x}^{2}+\left(-a^{2}+2\right){x}\)
sage: E = EllipticCurve([K([0,0,0,0]),K([3,0,-1,0]),K([0,0,0,0]),K([2,0,-1,0]),K([0,0,0,0])])
 
gp: E = ellinit([Polrev([0,0,0,0]),Polrev([3,0,-1,0]),Polrev([0,0,0,0]),Polrev([2,0,-1,0]),Polrev([0,0,0,0])], K);
 
magma: E := EllipticCurve([K![0,0,0,0],K![3,0,-1,0],K![0,0,0,0],K![2,0,-1,0],K![0,0,0,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^3-2a^2-6a+4)\) = \((a^3-a^2-3a+2)^{3}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 64 \) = \(4^{3}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((16)\) = \((a^3-a^2-3a+2)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 65536 \) = \(4^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 2048 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{3} - 3 a + 1 : -a^{3} + 2 a^{2} + 4 a - 6 : 1\right)$
Height \(0.073302756650590698413625299801375239748\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(0 : 0 : 1\right)$ $\left(-1 : 0 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.073302756650590698413625299801375239748 \)
Period: \( 949.41441280071412041925304446288588782 \)
Tamagawa product: \( 4 \)
Torsion order: \(4\)
Leading coefficient: \( 1.55618465901717 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-a^2-3a+2)\) \(4\) \(4\) \(I_{1}^{*}\) Additive \(-1\) \(3\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 64.1-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 4 elliptic curves:

Base field Curve
\(\Q\) 200.d2
\(\Q\) 200.b2
\(\Q(\sqrt{5}) \) 2.2.5.1-1600.1-f3
\(\Q(\sqrt{5}) \) 2.2.5.1-256.1-c3