Properties

Label 4.4.2000.1-64.1-a6
Base field \(\Q(\zeta_{20})^+\)
Conductor norm \( 64 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{20})^+\)

Generator \(a\), with minimal polynomial \( x^{4} - 5 x^{2} + 5 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([5, 0, -5, 0, 1]))
 
gp: K = nfinit(Polrev([5, 0, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5, 0, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-2a+1\right){x}{y}={x}^{3}+\left(a^{3}+a^{2}-3a-3\right){x}^{2}+\left(12a^{3}+13a^{2}-39a-44\right){x}+20a^{3}+22a^{2}-69a-79\)
sage: E = EllipticCurve([K([1,-2,0,1]),K([-3,-3,1,1]),K([0,0,0,0]),K([-44,-39,13,12]),K([-79,-69,22,20])])
 
gp: E = ellinit([Polrev([1,-2,0,1]),Polrev([-3,-3,1,1]),Polrev([0,0,0,0]),Polrev([-44,-39,13,12]),Polrev([-79,-69,22,20])], K);
 
magma: E := EllipticCurve([K![1,-2,0,1],K![-3,-3,1,1],K![0,0,0,0],K![-44,-39,13,12],K![-79,-69,22,20]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^3-2a^2-6a+4)\) = \((a^3-a^2-3a+2)^{3}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 64 \) = \(4^{3}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((4)\) = \((a^3-a^2-3a+2)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 256 \) = \(4^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 78608 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(a^{2} - a - 3 : a^{2} - 1 : 1\right)$ $\left(\frac{1}{2} a^{3} - 2 a - 2 : \frac{3}{4} a^{3} + \frac{1}{2} a^{2} - a - \frac{1}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 367.84707496737816806928544508748259148 \)
Tamagawa product: \( 2 \)
Torsion order: \(4\)
Leading coefficient: \( 1.02816383118940 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-a^2-3a+2)\) \(4\) \(2\) \(III\) Additive \(1\) \(3\) \(4\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 64.1-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 4 elliptic curves:

Base field Curve
\(\Q\) 400.b1
\(\Q\) 400.g1
\(\Q(\sqrt{5}) \) a curve with conductor norm 6400 (not in the database)
\(\Q(\sqrt{5}) \) 2.2.5.1-64.1-a4