Properties

Label 4.4.2000.1-59.3-b1
Base field \(\Q(\zeta_{20})^+\)
Conductor norm \( 59 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{20})^+\)

Generator \(a\), with minimal polynomial \( x^{4} - 5 x^{2} + 5 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([5, 0, -5, 0, 1]))
 
gp: K = nfinit(Polrev([5, 0, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5, 0, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a^{3}+a^{2}-2a-3\right){y}={x}^{3}+\left(-a^{2}+a+2\right){x}^{2}+\left(-2a^{3}-a^{2}+6a+3\right){x}+3a^{3}+4a^{2}-5a-5\)
sage: E = EllipticCurve([K([1,1,0,0]),K([2,1,-1,0]),K([-3,-2,1,1]),K([3,6,-1,-2]),K([-5,-5,4,3])])
 
gp: E = ellinit([Polrev([1,1,0,0]),Polrev([2,1,-1,0]),Polrev([-3,-2,1,1]),Polrev([3,6,-1,-2]),Polrev([-5,-5,4,3])], K);
 
magma: E := EllipticCurve([K![1,1,0,0],K![2,1,-1,0],K![-3,-2,1,1],K![3,6,-1,-2],K![-5,-5,4,3]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3+a^2-4a-1)\) = \((a^3+a^2-4a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 59 \) = \(59\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-13a^3-8a^2+33a+36)\) = \((a^3+a^2-4a-1)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -205379 \) = \(-59^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{3559234608}{205379} a^{3} - \frac{7434481239}{205379} a^{2} - \frac{3401019009}{205379} a + \frac{8873009136}{205379} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{3} + a^{2} + a - 2 : a^{3} - a^{2} + 2 : 1\right)$
Height \(0.0031523408913066039099401569475851514177\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0031523408913066039099401569475851514177 \)
Period: \( 1465.9293006815241145897773934434963308 \)
Tamagawa product: \( 3 \)
Torsion order: \(1\)
Leading coefficient: \( 1.23997362999756 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3+a^2-4a-1)\) \(59\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3Nn

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 59.3-b consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.