Properties

Label 4.4.2000.1-324.1-d3
Base field \(\Q(\zeta_{20})^+\)
Conductor norm \( 324 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 10 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{20})^+\)

Generator \(a\), with minimal polynomial \( x^{4} - 5 x^{2} + 5 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([5, 0, -5, 0, 1]))
 
gp: K = nfinit(Polrev([5, 0, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5, 0, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-3\right){x}{y}+\left(a^{2}-3\right){y}={x}^{3}+\left(-a^{2}+2\right){x}^{2}+\left(-10a^{2}+9\right){x}+31a^{2}-42\)
sage: E = EllipticCurve([K([-3,0,1,0]),K([2,0,-1,0]),K([-3,0,1,0]),K([9,0,-10,0]),K([-42,0,31,0])])
 
gp: E = ellinit([Polrev([-3,0,1,0]),Polrev([2,0,-1,0]),Polrev([-3,0,1,0]),Polrev([9,0,-10,0]),Polrev([-42,0,31,0])], K);
 
magma: E := EllipticCurve([K![-3,0,1,0],K![2,0,-1,0],K![-3,0,1,0],K![9,0,-10,0],K![-42,0,31,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((3a^3-3a^2-9a+6)\) = \((a^3-a^2-3a+2)\cdot(3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 324 \) = \(4\cdot81\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((18)\) = \((a^3-a^2-3a+2)^{2}\cdot(3)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 104976 \) = \(4^{2}\cdot81^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{131872229}{18} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{2} - a - 2 : -2 a^{2} - 2 a + 2 : 1\right)$
Height \(0.26021102422771097657212502052091857935\)
Torsion structure: \(\Z/10\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(2 a^{2} - 4 : a^{2} - 4 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.26021102422771097657212502052091857935 \)
Period: \( 1962.4564824862468096830156268600211838 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(10\)
Leading coefficient: \( 1.82696703838506 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-a^2-3a+2)\) \(4\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((3)\) \(81\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.1.1[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 324.1-d consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 4 elliptic curves:

Base field Curve
\(\Q\) 1200.g2
\(\Q\) 1200.m2
\(\Q(\sqrt{5}) \) a curve with conductor norm 57600 (not in the database)
\(\Q(\sqrt{5}) \) 2.2.5.1-36.1-a4