Properties

Label 4.4.2000.1-320.1-e4
Base field \(\Q(\zeta_{20})^+\)
Conductor norm \( 320 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{20})^+\)

Generator \(a\), with minimal polynomial \( x^{4} - 5 x^{2} + 5 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([5, 0, -5, 0, 1]))
 
gp: K = nfinit(Polrev([5, 0, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5, 0, -5, 0, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+\left(a^{3}+a^{2}-3a-2\right){x}^{2}+\left(2a^{3}+3a^{2}-4a-5\right){x}+3a^{3}+5a^{2}-6a-9\)
sage: E = EllipticCurve([K([0,0,0,0]),K([-2,-3,1,1]),K([0,0,0,0]),K([-5,-4,3,2]),K([-9,-6,5,3])])
 
gp: E = ellinit([Polrev([0,0,0,0]),Polrev([-2,-3,1,1]),Polrev([0,0,0,0]),Polrev([-5,-4,3,2]),Polrev([-9,-6,5,3])], K);
 
magma: E := EllipticCurve([K![0,0,0,0],K![-2,-3,1,1],K![0,0,0,0],K![-5,-4,3,2],K![-9,-6,5,3]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^2-2a+10)\) = \((a^3-a^2-3a+2)^{3}\cdot(a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 320 \) = \(4^{3}\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-80)\) = \((a^3-a^2-3a+2)^{8}\cdot(a)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 40960000 \) = \(4^{8}\cdot5^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 1536 a^{3} - \frac{10496}{5} a^{2} - \frac{12288}{5} a + \frac{13824}{5} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a^{3} - a^{2} + 3 a + 3 : 0 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 60.185307771951957317795554215039222936 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 1.34578439424831 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-a^2-3a+2)\) \(4\) \(2\) \(I_{1}^{*}\) Additive \(1\) \(3\) \(8\) \(0\)
\((a)\) \(5\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 320.1-e consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.