Properties

Label 4.4.2000.1-320.1-a2
Base field \(\Q(\zeta_{20})^+\)
Conductor norm \( 320 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{20})^+\)

Generator \(a\), with minimal polynomial \( x^{4} - 5 x^{2} + 5 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([5, 0, -5, 0, 1]))
 
gp: K = nfinit(Polrev([5, 0, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5, 0, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}+a-3\right){x}{y}+\left(a^{3}-2a+1\right){y}={x}^{3}+\left(-a^{3}-a^{2}+3a+4\right){x}^{2}+\left(a^{3}-3a^{2}-8a+1\right){x}+9a^{3}+11a^{2}-30a-36\)
sage: E = EllipticCurve([K([-3,1,1,0]),K([4,3,-1,-1]),K([1,-2,0,1]),K([1,-8,-3,1]),K([-36,-30,11,9])])
 
gp: E = ellinit([Polrev([-3,1,1,0]),Polrev([4,3,-1,-1]),Polrev([1,-2,0,1]),Polrev([1,-8,-3,1]),Polrev([-36,-30,11,9])], K);
 
magma: E := EllipticCurve([K![-3,1,1,0],K![4,3,-1,-1],K![1,-2,0,1],K![1,-8,-3,1],K![-36,-30,11,9]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^2-2a+10)\) = \((a^3-a^2-3a+2)^{3}\cdot(a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 320 \) = \(4^{3}\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((8a^2-20)\) = \((a^3-a^2-3a+2)^{4}\cdot(a)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 6400 \) = \(4^{4}\cdot5^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{124026912}{5} a^{3} - \frac{145264624}{5} a^{2} - 90071072 a + 105738976 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-4 a^{3} - 4 a^{2} + 15 a + 16 : 19 a^{3} + 23 a^{2} - 70 a - 85 : 1\right)$
Height \(0.059195936396719295697079776552447107885\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(a^{3} + 2 a^{2} - 3 a - 6 : -a^{3} + 2 a - 2 : 1\right)$ $\left(\frac{1}{2} a^{3} + a^{2} - \frac{3}{2} a - 3 : -\frac{3}{4} a^{3} + \frac{3}{2} a - \frac{5}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.059195936396719295697079776552447107885 \)
Period: \( 1874.4268838100424421606346982087061281 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(4\)
Leading coefficient: \( 2.48110647151223 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-a^2-3a+2)\) \(4\) \(2\) \(III\) Additive \(-1\) \(3\) \(4\) \(0\)
\((a)\) \(5\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 320.1-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.