Properties

Label 4.4.19821.1-57.1-d2
Base field 4.4.19821.1
Conductor norm \( 57 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.19821.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 8 x^{2} + 6 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, 6, -8, -1, 1]))
 
gp: K = nfinit(Polrev([3, 6, -8, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, 6, -8, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-\frac{1}{3}a^{3}+\frac{2}{3}a^{2}+2a-3\right){x}{y}+\left(\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-2a-1\right){y}={x}^{3}+\left(-\frac{1}{3}a^{3}+\frac{2}{3}a^{2}+3a-3\right){x}^{2}+\left(-\frac{190}{3}a^{3}-\frac{22}{3}a^{2}+502a+172\right){x}-\frac{1208}{3}a^{3}-\frac{134}{3}a^{2}+3179a+1095\)
sage: E = EllipticCurve([K([-3,2,2/3,-1/3]),K([-3,3,2/3,-1/3]),K([-1,-2,1/3,1/3]),K([172,502,-22/3,-190/3]),K([1095,3179,-134/3,-1208/3])])
 
gp: E = ellinit([Polrev([-3,2,2/3,-1/3]),Polrev([-3,3,2/3,-1/3]),Polrev([-1,-2,1/3,1/3]),Polrev([172,502,-22/3,-190/3]),Polrev([1095,3179,-134/3,-1208/3])], K);
 
magma: E := EllipticCurve([K![-3,2,2/3,-1/3],K![-3,3,2/3,-1/3],K![-1,-2,1/3,1/3],K![172,502,-22/3,-190/3],K![1095,3179,-134/3,-1208/3]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-1/3a^3+2/3a^2+3a-1)\) = \((-1/3a^3-1/3a^2+3a+2)\cdot(1/3a^3-2/3a^2-2a+5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 57 \) = \(3\cdot19\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((88a^3+6a^2-591a+18)\) = \((-1/3a^3-1/3a^2+3a+2)^{17}\cdot(1/3a^3-2/3a^2-2a+5)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 2453663097 \) = \(3^{17}\cdot19\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{217217028070}{373977} a^{3} + \frac{1324842416596}{373977} a^{2} - \frac{2515509051217}{373977} a + \frac{161738260330}{41553} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{529517}{729147} a^{3} - \frac{479131}{729147} a^{2} - \frac{1290635}{243049} a + \frac{397469}{243049} : -\frac{1022060203}{359469471} a^{3} - \frac{584877703}{359469471} a^{2} + \frac{2615786956}{119823157} a + \frac{2311774959}{119823157} : 1\right)$
Height \(3.8997761944364590610742749180106011389\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{2}{3} a^{3} - \frac{1}{3} a^{2} - 5 a - 1 : -a + 1 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 3.8997761944364590610742749180106011389 \)
Period: \( 180.83007709824332028664128830587539517 \)
Tamagawa product: \( 1 \)  =  \(1\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 5.00896008081805 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-1/3a^3-1/3a^2+3a+2)\) \(3\) \(1\) \(I_{17}\) Non-split multiplicative \(1\) \(1\) \(17\) \(17\)
\((1/3a^3-2/3a^2-2a+5)\) \(19\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 57.1-d consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.