Properties

Label 4.4.19821.1-57.1-d1
Base field 4.4.19821.1
Conductor norm \( 57 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.19821.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 8 x^{2} + 6 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, 6, -8, -1, 1]))
 
gp: K = nfinit(Polrev([3, 6, -8, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, 6, -8, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-\frac{1}{3}a^{3}+\frac{2}{3}a^{2}+2a-3\right){x}{y}+\left(\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-2a-1\right){y}={x}^{3}+\left(-\frac{1}{3}a^{3}+\frac{2}{3}a^{2}+3a-3\right){x}^{2}+\left(305a^{3}+31a^{2}-2403a-828\right){x}-3302a^{3}-350a^{2}+26036a+8964\)
sage: E = EllipticCurve([K([-3,2,2/3,-1/3]),K([-3,3,2/3,-1/3]),K([-1,-2,1/3,1/3]),K([-828,-2403,31,305]),K([8964,26036,-350,-3302])])
 
gp: E = ellinit([Polrev([-3,2,2/3,-1/3]),Polrev([-3,3,2/3,-1/3]),Polrev([-1,-2,1/3,1/3]),Polrev([-828,-2403,31,305]),Polrev([8964,26036,-350,-3302])], K);
 
magma: E := EllipticCurve([K![-3,2,2/3,-1/3],K![-3,3,2/3,-1/3],K![-1,-2,1/3,1/3],K![-828,-2403,31,305],K![8964,26036,-350,-3302]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-1/3a^3+2/3a^2+3a-1)\) = \((-1/3a^3-1/3a^2+3a+2)\cdot(1/3a^3-2/3a^2-2a+5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 57 \) = \(3\cdot19\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-1526/3a^3+3835/3a^2-29939a+49270)\) = \((-1/3a^3-1/3a^2+3a+2)^{34}\cdot(1/3a^3-2/3a^2-2a+5)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -6020462593579631409 \) = \(-3^{34}\cdot19^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{4957694999417395}{46619598843} a^{3} + \frac{9593307021539665}{46619598843} a^{2} - \frac{11878525618289761}{46619598843} a - \frac{5175805466469244}{46619598843} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{20}{3} a^{3} - \frac{4}{3} a^{2} - 52 a - 5 : -\frac{35}{3} a^{3} - \frac{29}{3} a^{2} + 94 a + 100 : 1\right)$
Height \(1.9498880972182295305371374590053005695\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{5}{4} a^{3} + \frac{1}{4} a^{2} + \frac{37}{4} a + \frac{5}{2} : -\frac{5}{12} a^{3} - \frac{5}{12} a^{2} + \frac{31}{8} a + \frac{3}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.9498880972182295305371374590053005695 \)
Period: \( 90.415038549121660143320644152937697587 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 5.00896008081805 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-1/3a^3-1/3a^2+3a+2)\) \(3\) \(2\) \(I_{34}\) Non-split multiplicative \(1\) \(1\) \(34\) \(34\)
\((1/3a^3-2/3a^2-2a+5)\) \(19\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 57.1-d consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.