Properties

Label 4.4.19821.1-51.1-a1
Base field 4.4.19821.1
Conductor norm \( 51 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.19821.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 8 x^{2} + 6 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, 6, -8, -1, 1]))
 
gp: K = nfinit(Polrev([3, 6, -8, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, 6, -8, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-\frac{1}{3}a^{3}+\frac{2}{3}a^{2}+2a-3\right){x}{y}={x}^{3}+\left(\frac{1}{3}a^{3}-\frac{2}{3}a^{2}-3a+2\right){x}^{2}+\left(\frac{4}{3}a^{3}-\frac{5}{3}a^{2}-8a+10\right){x}-\frac{10}{3}a^{3}+\frac{41}{3}a^{2}-13a+2\)
sage: E = EllipticCurve([K([-3,2,2/3,-1/3]),K([2,-3,-2/3,1/3]),K([0,0,0,0]),K([10,-8,-5/3,4/3]),K([2,-13,41/3,-10/3])])
 
gp: E = ellinit([Polrev([-3,2,2/3,-1/3]),Polrev([2,-3,-2/3,1/3]),Polrev([0,0,0,0]),Polrev([10,-8,-5/3,4/3]),Polrev([2,-13,41/3,-10/3])], K);
 
magma: E := EllipticCurve([K![-3,2,2/3,-1/3],K![2,-3,-2/3,1/3],K![0,0,0,0],K![10,-8,-5/3,4/3],K![2,-13,41/3,-10/3]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1/3a^3+1/3a^2-3a+1)\) = \((-1/3a^3-1/3a^2+3a+2)\cdot(a+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 51 \) = \(3\cdot17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-7/3a^3+2/3a^2+17a-10)\) = \((-1/3a^3-1/3a^2+3a+2)^{3}\cdot(a+2)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 7803 \) = \(3^{3}\cdot17^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{27786899}{2601} a^{3} + \frac{37336988}{2601} a^{2} + \frac{209237104}{2601} a - \frac{79584637}{867} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(2\)
Generators $\left(-\frac{1}{3} a^{3} + \frac{2}{3} a^{2} + \frac{5}{3} a - \frac{4}{3} : -\frac{5}{9} a^{3} + \frac{11}{9} a^{2} + \frac{19}{9} a - \frac{8}{3} : 1\right)$ $\left(-\frac{1}{3} a^{3} + \frac{2}{3} a^{2} + 2 a - 2 : -\frac{2}{3} a^{3} + \frac{4}{3} a^{2} + 3 a - 4 : 1\right)$
Heights \(0.18507266902982584312911358219812853672\) \(0.13281323255354028117506593519225422050\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(2\)
Regulator: \( 0.019923622853539082706999925784913381461 \)
Period: \( 1400.7872184415214370872265434835497494 \)
Tamagawa product: \( 2 \)  =  \(1\cdot2\)
Torsion order: \(1\)
Leading coefficient: \( 6.34348153477783 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-1/3a^3-1/3a^2+3a+2)\) \(3\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)
\((a+2)\) \(17\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 51.1-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.