Properties

Label 4.4.19821.1-48.1-f3
Base field 4.4.19821.1
Conductor norm \( 48 \)
CM no
Base change no
Q-curve no
Torsion order \( 3 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.19821.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 8 x^{2} + 6 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, 6, -8, -1, 1]))
 
gp: K = nfinit(Polrev([3, 6, -8, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, 6, -8, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a^{2}-3\right){x}^{2}+\left(\frac{4}{3}a^{3}+\frac{1}{3}a^{2}-3a+1\right){x}+\frac{13}{3}a^{3}+\frac{28}{3}a^{2}-11a-5\)
sage: E = EllipticCurve([K([1,1,0,0]),K([-3,0,1,0]),K([0,0,0,0]),K([1,-3,1/3,4/3]),K([-5,-11,28/3,13/3])])
 
gp: E = ellinit([Polrev([1,1,0,0]),Polrev([-3,0,1,0]),Polrev([0,0,0,0]),Polrev([1,-3,1/3,4/3]),Polrev([-5,-11,28/3,13/3])], K);
 
magma: E := EllipticCurve([K![1,1,0,0],K![-3,0,1,0],K![0,0,0,0],K![1,-3,1/3,4/3],K![-5,-11,28/3,13/3]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2/3a^3-2/3a^2+6a+4)\) = \((-1/3a^3-1/3a^2+3a+2)\cdot(2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 48 \) = \(3\cdot16\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2/3a^3+2/3a^2-4a-4)\) = \((-1/3a^3-1/3a^2+3a+2)^{2}\cdot(2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 144 \) = \(3^{2}\cdot16\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{165192620}{3} a^{3} - \frac{1676553739}{6} a^{2} + \frac{895634596}{3} a + \frac{420165101}{3} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{1}{3} a^{2} - \frac{2}{3} a + \frac{5}{3} : \frac{4}{9} a^{3} + \frac{11}{9} a^{2} - \frac{8}{9} a - \frac{5}{3} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1992.0237491127920273429740520400155003 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(3\)
Leading coefficient: \( 3.14426554913589 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-1/3a^3-1/3a^2+3a+2)\) \(3\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\((2)\) \(16\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3 and 9.
Its isogeny class 48.1-f consists of curves linked by isogenies of degrees dividing 9.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.