Properties

Label 4.4.19821.1-27.2-e1
Base field 4.4.19821.1
Conductor norm \( 27 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.19821.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 8 x^{2} + 6 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, 6, -8, -1, 1]))
 
gp: K = nfinit(Polrev([3, 6, -8, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, 6, -8, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-4\right){x}{y}+\left(a^{2}-a-4\right){y}={x}^{3}+\left(-\frac{1}{3}a^{3}+\frac{2}{3}a^{2}+a-2\right){x}^{2}+\left(-\frac{4}{3}a^{3}+\frac{20}{3}a^{2}-2a-21\right){x}+\frac{17}{3}a^{3}+\frac{8}{3}a^{2}-66a+28\)
sage: E = EllipticCurve([K([-4,-1,1,0]),K([-2,1,2/3,-1/3]),K([-4,-1,1,0]),K([-21,-2,20/3,-4/3]),K([28,-66,8/3,17/3])])
 
gp: E = ellinit([Polrev([-4,-1,1,0]),Polrev([-2,1,2/3,-1/3]),Polrev([-4,-1,1,0]),Polrev([-21,-2,20/3,-4/3]),Polrev([28,-66,8/3,17/3])], K);
 
magma: E := EllipticCurve([K![-4,-1,1,0],K![-2,1,2/3,-1/3],K![-4,-1,1,0],K![-21,-2,20/3,-4/3],K![28,-66,8/3,17/3]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1/3a^3-2/3a^2-2a+1)\) = \((-1/3a^3-1/3a^2+3a+2)^{3}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 27 \) = \(3^{3}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^3+6a)\) = \((-1/3a^3-1/3a^2+3a+2)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -243 \) = \(-3^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{6364868}{3} a^{3} + \frac{8738927}{3} a^{2} - 8598468 a - 3255814 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(49 a^{3} - 67 a^{2} - 368 a + 427 : -\frac{3205}{3} a^{3} + \frac{4313}{3} a^{2} + 8044 a - 9185 : 1\right)$
Height \(1.0789528245807571086070562524368095080\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.0789528245807571086070562524368095080 \)
Period: \( 99.317033553768275300610210787191106057 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 3.04455207122972 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-1/3a^3-1/3a^2+3a+2)\) \(3\) \(1\) \(IV\) Additive \(-1\) \(3\) \(5\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 27.2-e consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.